(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值; (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.

admin2018-06-12  61

问题 (Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值;
    (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.

选项

答案(Ⅰ)因为(E+A)A=0,A≠0,知齐次方程组(E+A)χ=0有非零解,即行列式|E+A|=0,所以λ=-1必是矩阵A的特征值.同理λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理λ=0也必是矩阵B的特征值. (Ⅱ)对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因BA=0,故 Bα=0=0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量.因而α,β线性无关.

解析
转载请注明原文地址:https://kaotiyun.com/show/eUg4777K
0

最新回复(0)