首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值; (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值; (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
admin
2018-06-12
90
问题
(Ⅰ)设A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明λ=-1必是矩阵A与B的特征值;
(Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
选项
答案
(Ⅰ)因为(E+A)A=0,A≠0,知齐次方程组(E+A)χ=0有非零解,即行列式|E+A|=0,所以λ=-1必是矩阵A的特征值.同理λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理λ=0也必是矩阵B的特征值. (Ⅱ)对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因BA=0,故 Bα=0=0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量.因而α,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/eUg4777K
0
考研数学一
相关试题推荐
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明a1,a2,…,an线性无关.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).证明:f(x1)f(x2)≥
A,B是n阶方阵,则下列公式正确的是()
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设a>0,b>0,a≠b,证明下列不等式:(Ⅰ)ap+bp>21-p(a+b)p(p>1);(Ⅱ)ap+bp<21-p(a+b)p(0<p<1).
求下列定积分:(Ⅰ)I=dx;(Ⅱ)J=sin2xarctanexdx.
求解初值问题
随机试题
我国国家基本药物调整的周期一般为
鉴别流脑和乙脑最有意义的是( )。
某电信工程公司在某地承接了40km架空光缆线路工程,线路主要沿三级公路架设,中间穿越一条铁路。承包方式为包工不包料,计划工期为40天。合同签订后,项目部纽织相关技术人员编制了施工组织设计,主要内容包括:工程概况,详细的施工方案,工程进度目标及施工进度计划,
保险公司需要办理再保险分出业务的,可以自主选择保险公司办理。( )
某便利店有3种商品临时发生缺货,理货员向配送中心发送了一份补货订单,如果配送中心这3种商品的服务水平都是0.9,那么该便利店补货全部得以满足的概率是()。
2004年2月,我国的()被联合国教科文组织评为“世界地质公园”。
下述范畴中,属于道德评价的是()。
以下关于平均失业持续期表述错误的是()。
创新、协调、绿色、开放、共享的发展理念,相互贯通、相互促进,是具有内在联系的集合体。其内在联系是()
数字签名通常采用(1)对消息摘要进行加密,接收方采用(2)来验证签名。(2)
最新回复
(
0
)