首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2018-07-27
50
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Ax=0的解,因此Ax=0至少有r(B)个线性无关解,所以Ax=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2.于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2.则Ax=0的基础解系由一个向量构成.又因为A[*]=0,所以Ax=0的通解为 x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,C不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,从而η
1
,η
2
可作为Ax=0的基础解系.故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/eWW4777K
0
考研数学三
相关试题推荐
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=_________.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3),如果|A|=1,那么|B|=______.
设n阶矩阵A=,则|2A|=_______.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
已知a,b,c不全为零,证明方程组只有零解.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
随机试题
被列入世界人类口头与非物质文化遗产的剧种是()
不属于类固醇激素分泌细胞结构特点的是
漏肩风肩外侧疼痛明显时,应循经加用( )
以下哪项不是大量输血的并发症?()
下列关于土地调查成果,表述正确的是()。
下列指标中,使用一张财务报表计算不出来的是()。
根据以下资料,回答下列问题。2006年全国共有生产力促进中心133l家,比上年增加61家。生产力促进中心在全国分布广泛,但地区分布不均,四川、山西、黑龙江、广西、福建等地较多,分别为136、99、96、94、83家。边远省份数量较少,如海南省仅有
Nowadays,airtravelisvery【21】.WearenotsurprisedwhenwewatchonTVthatapoliticianhastalkedwithFrenchPresidentin
Tothemajorityofus,musicisanindispensablepartofourdailylife.Itcanbedefinedinthisway,musicissoundarranged
A、Shecutherhairshortlikeaboy.B、Shesavedmoneyandboughtabicycle.C、Shegothighscoresinscience.D、Shedecidedto
最新回复
(
0
)