首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明: 在(a,b)内,f(x)>0.
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明: 在(a,b)内,f(x)>0.
admin
2022-10-08
59
问题
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限
存在,证明:
在(a,b)内,f(x)>0.
选项
答案
因为[*]存在,故[*],由f(x)在[a,b]上连续,从而f(a)=0,又f’(x)>0,知f(x)在(a,b)内单调增加,故f(x)>f(a)=0,x∈(a,b).
解析
转载请注明原文地址:https://kaotiyun.com/show/eYR4777K
0
考研数学三
相关试题推荐
设函数f(x)在x0处可导,且f(x0)≠0,求
设则f(x)=()
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x).求3阶矩阵B,使A=PBP-1;
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,-2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,6+3,5)T.问:a,b为何值时,β不能由α1,α2,α3,α4线性表示;
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在(-1,1)内至少存在一点ξ,使得f′"(ξ)=3.
求幂级数的和函数.
试证当x>0时,(x2-1)lnx≥(x-1)2.
设f(x)是以T为周期的连续函数.证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k,
设求f(x)的值域.
随机试题
简述运用行政方法的必要性。
女性患者,24岁,5天前无明显诱因右腹部起红斑、水疱,伴灼热刺痛,继之腰部也出现皮疹。自觉口苦纳呆,食后腹胀,小便黄,大便不爽。检查:右腰腹部沿胸11~12神经分布区可见簇集呈带状排列的绿豆大小水疱,内容清澄,基底有炎性水肿性红斑。舌质淡,舌体胖大有齿痕,
患者,女,34岁。大叶性肺炎,右侧胸痛,体检时发现胸部不对称,右侧呼吸运动减弱。肺炎伴胸痛时的体位是
在运用移动平均法预测房地产价格时,一般应按照房地产价格变化的同期长度进行移动平均。()
提升绿色环保水平是建设“品质工程”的迫切需要,提升绿色环保水平的具体内容包括()。
以下属于招标采购的是()。
风险中立者选择资产的态度是当预期收益率相同时,偏好于具有低风险的资产;而对于具有同样风险的资产,则钟情于具有高预期收益率的资产。()
货币主义认为,扩张的财政政策如果没有相应的货币政策配合,就会产生“()”。
张红家有一筐苹果,第一天吃了,以后每天依次吃了前一天剩下的苹果的,最后剩下10个苹果,原来筐里有多少个苹果?()
Windows环境下可以用来修改主机默认网关设置的命令是()。
最新回复
(
0
)