首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值分别为0,1,1, 是A的两个不同的特征向量,且A(α1+α2)=α2. 求方程组Ax=α2的通解;
设三阶实对称矩阵A的特征值分别为0,1,1, 是A的两个不同的特征向量,且A(α1+α2)=α2. 求方程组Ax=α2的通解;
admin
2017-06-14
63
问题
设三阶实对称矩阵A的特征值分别为0,1,1,
是A的两个不同的特征向量,且A(α
1
+α
2
)=α
2
.
求方程组Ax=α
2
的通解;
选项
答案
因为A可对角化,且 [*] 可见秩r(A)=2,于是齐次线性方程组Ax= 0的基础解系所含解向量的个数为3-r(A)=1.而Aα
1
=0.α
1
=0,因此α
1
可作为Ax=0的基础解系,又Aα
2
=α
2
,α
2
是Ax=α
2
的特解.故Ax=α
2
的通解为 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/eZu4777K
0
考研数学一
相关试题推荐
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为证明A+E为正定矩阵.
(2012年试题,三)已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
以多个行业或以多个地区或以多个顾客群为目标市场的战略是
下列各项,属于资产负债表中流动资产项目的有()。
根据哪方面的临床表现区别中枢性瘫痪和周围性瘫痪
淤斑伤寒
A.清茶调服B.米汤送服C.淡盐水送服D.温开水送服E.忌与热茶同饮云南白药治疗出血证的正确使用方法是()。
下列关于党章的表述中,正确的是()。
预作用系统的雨淋阀瓣打开后,水力警铃的动作应是()。
作为一名教师就应无私奉献,如果对节假日补课不主动积极,是师德低下的表现。()(2015.天津)
每一位学习者在面对新的信息时,总是在自己的先前经验的基础上,以其特殊的方式来获得对新信息、新问题的理解,从而形成个人的意义,这属于()的主张。
UNIX命令的一般格式是()。
最新回复
(
0
)