首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0. 证明:方程f”(x)-f(x)=0在(0,1)内有根.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0. 证明:方程f”(x)-f(x)=0在(0,1)内有根.
admin
2019-11-25
44
问题
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0. 证明:方程f”(x)-f(x)=0在(0,1)内有根.
选项
答案
令φ(x)=e
-x
[f(x)+f’(x)].因为φ(0)=φ(1)=0,所以由罗尔定理,存在c∈(0,1)使得φ’(c)=0,而φ’(x)=e
-x
[f”(x)-f(x)]且e
-x
≠0,所以方程f”(c)-f(c)=0在(0,1)内有根.
解析
转载请注明原文地址:https://kaotiyun.com/show/ebD4777K
0
考研数学三
相关试题推荐
设f(x)=求f(x)的间断点并判定其类型.
设a>0,x1>0,
设a1=2,an+1=(n=1,2,…),证明存在,并求其极限值.
设从均值为μ,方差为σ2(>0)的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为.证明对于任何满足条件a+b=1的常数a,b,都有ET=μ,其中T=,并确定常数a,b,使得方差DT达到最小.
设A,B,C均是3阶矩阵,满足AB=B2一BC,其中则A5=________
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f’(ξ)=0.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.(1)计算ABT与ATB;(2)求矩阵ABT的秩r(ABT);(3)设C=E一ABT,其中E为n阶单位矩阵.证明:CTC=E一BAT一ABT+BBT的充要条件是ATA=1
设顾客在某银行窗口等待服务的时间X(单位:分钟)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1).
设A为四阶矩阵,|A*|=8,则=__________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|—|μ≥2}≤_____________.
随机试题
背景材料我国某饮料厂急需某种饮料的生产技术及设备,准备与一法国厂家进行谈判。在谈判前,法方同时邀请了另外两家国外厂商前来谈判,在与我方谈判过程中不时透露一些有关我方竞争对手的情况。当法方就某一问题逼我方让步时,我方在其他问题上要求对方做出让步,最后双方都
有关梅毒螺旋体的描述,错误的是
表现为咳声重浊沉闷,吐痰色白的是
在对建设项目信息进行分类时,要求同一层面上各个子类互相排斥,这是建设项目信息分类必须遵守的( )原则体现。
参与工程竣工验收的建设、勘察、设计、施工、监理等各方不能形成一致意见时,应采取的解决方法是()。
根据企业破产法律制度的规定,在第一次债权人会议召开之前,管理人()的行为,应当经人民法院许可。(2011年)
假设银行系统的原始存款额为1000亿元,法定存款准备金率为8%,超额准备金率为2%,现金漏损率为10%。根据上述资料,回答下列问题。下列关于商业银行存款准备金的等式中,正确的有()。
清代天主教在福建形成泉州和漳州两个传播中心。()
社会救助和对弱势人口的救助属于政府的()。
中国政府宣布每年的8月8日为“全民健身日”(NationalFitnessDay),推动全民健身。这一举动不仅在全国范围内普及了健康理念,还使人们锻炼的方式更加多样化。每天早晨,喜欢户外运动的老年人会聚集(congregate)在公园里锻炼身体,如打太
最新回复
(
0
)