首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令 求 X与Y的相关系数ρXY;
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令 求 X与Y的相关系数ρXY;
admin
2019-05-11
73
问题
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令
求
X与Y的相关系数ρ
XY
;
选项
答案
解一 用同一表格法求之.为此,将(X,Y)的概率分布改写下述形式: [*] 由上表即得,随机变量,X,X
2
,Y,Y
2
,XY,X
2
+Y
2
的概率分布分别为 [*] 因而E(X)=1/4, E(X
2
)=1/4, E(Y)=1/6, E(Y
2
)=1/6, E(XY)=1/12. D(X)=E(X
2
)-[E(X)]
2
=1/4-(1/4)
2
=3/16, D(Y)=E(Y
2
)-[E(Y)]
2
=1/6-(1/6)
2
=5/36. cov(X,Y)=](XY)一E(X)E(Y)=1/12=(1/4)(1/6)=1/24, [*] 解二 由(1)中(X,Y)的联合分布表即表①知,X,Y分别服从参数为1/4,1/6的0-1分布.由命题3.3.1.3即得 E(X)=1/4,D(X)=(1/4)(1-1/4)=3/16, E(Y)=1/6,D(Y)=(1/6)(1-1/6)=5/36, E(XY)=P(X=1,Y=1)=1/12. 于是 cov(X,Y)=E(XY)=E(X)E(Y)=1/24, [*] 注:命题3.3.1.3 已知(X
1
,X
2
)的联合分布律,其中单个随机变量X
1
与X
2
分别服从参数为p
1
,p
2
的0-1分布,则E(X
1
)=E(X
1
2
)=p
1
,E(X
2
)=E(X
2
2
)=p
2
,D(X
1
)=p
1
(1-p
1
),D(X
2
)=p
2
(1-p
2
),E(X
1
X
2
)=P(X
1
=1,X
2
=1).
解析
转载请注明原文地址:https://kaotiyun.com/show/ebJ4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的分布函数为F(x,y),边缘分布为FX(x)和FY(y),则概率P{X>x,Y>y}等于()
设随机变量X和Y分别服从,已知P{X=0,Y=0}=求:(Ⅰ)(X,Y)的分布;(Ⅱ)X和Y的相关系数;(Ⅲ)P{x=1|X2+Y2=1}。
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设X~U(0,2),Y=X2,求Y的概率密度函数.
设a0=1,a1=2,a2=,an+1=an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设α1,α2,…,αM与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设求矩阵A可对角化的概率.
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
随机试题
患者男,42岁。10小时前饱餐后出现持续性上腹痛,2小时前开始出现咳嗽,进行性呼吸困难。查体:BP85/50mmHg,P122次/分,T38.8℃,巩膜黄染,全腹压痛,伴反跳痛及肌紧张。血清淀粉酶700U/L。提问4:为了进一步评价该患者的病情,下列检
遗尿一般发生在睡眠周期的阶段是
用下列药物给家兔滴眼后,可使瞳孔明显扩大的药物是
工程咨询成果质量评价的标准是()。
关于债权与物权的区别,下列说法正确的是( )。
由控制器直接根据给定值控制被控制对象工作的控制系统是()控制系统。
F注册会计师在对己公司固定资产和累计折旧进行审计时,遇到下列情况,请代为作出正确的专业判断。审查己公司是否存在高估固定资产数额时,F注册会计师可采取的审计程序包括()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性的是()。
设f(x)=ex—∫0x(x—t)f(t)dt,其中f(x)连续,求f(x).
项目管理有4方面的内容,下列哪方面的工作对控制重复周期最有效?
最新回复
(
0
)