首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令 求 X与Y的相关系数ρXY;
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令 求 X与Y的相关系数ρXY;
admin
2019-05-11
101
问题
[2004年] 设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令
求
X与Y的相关系数ρ
XY
;
选项
答案
解一 用同一表格法求之.为此,将(X,Y)的概率分布改写下述形式: [*] 由上表即得,随机变量,X,X
2
,Y,Y
2
,XY,X
2
+Y
2
的概率分布分别为 [*] 因而E(X)=1/4, E(X
2
)=1/4, E(Y)=1/6, E(Y
2
)=1/6, E(XY)=1/12. D(X)=E(X
2
)-[E(X)]
2
=1/4-(1/4)
2
=3/16, D(Y)=E(Y
2
)-[E(Y)]
2
=1/6-(1/6)
2
=5/36. cov(X,Y)=](XY)一E(X)E(Y)=1/12=(1/4)(1/6)=1/24, [*] 解二 由(1)中(X,Y)的联合分布表即表①知,X,Y分别服从参数为1/4,1/6的0-1分布.由命题3.3.1.3即得 E(X)=1/4,D(X)=(1/4)(1-1/4)=3/16, E(Y)=1/6,D(Y)=(1/6)(1-1/6)=5/36, E(XY)=P(X=1,Y=1)=1/12. 于是 cov(X,Y)=E(XY)=E(X)E(Y)=1/24, [*] 注:命题3.3.1.3 已知(X
1
,X
2
)的联合分布律,其中单个随机变量X
1
与X
2
分别服从参数为p
1
,p
2
的0-1分布,则E(X
1
)=E(X
1
2
)=p
1
,E(X
2
)=E(X
2
2
)=p
2
,D(X
1
)=p
1
(1-p
1
),D(X
2
)=p
2
(1-p
2
),E(X
1
X
2
)=P(X
1
=1,X
2
=1).
解析
转载请注明原文地址:https://kaotiyun.com/show/ebJ4777K
0
考研数学三
相关试题推荐
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________。
设总体X的概率密度为X1,…,Xn为来自X的一个简单随机样本,求θ的矩估计量。
设随机变量且P{|X|≠|Y|}=1。(Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
设随机变量X的密度函数为f(x)=则P{|X-E(X)|<2D(X)}=______.
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
袋中有12只球,其中红球4个,白球8个,从中一次抽取2个球,求下列事件发生的概率:(1)2个球中1个是红球1个是白球;(2)2个球颜色相同.
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=______.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
随机试题
3x2y
患者,男性,42岁,1天前患者发生车祸,伤后有短暂的昏迷,醒后自觉腰痛不能坐立,腰部活动受限。二便可自解。既往史、个人史无特殊。查体:T36.5℃;P74次/分;R20次/分;BPl25/80mmHg。神清,双侧季肋部有擦伤。心肺查体未见特殊。患者脊柱腰椎
在一份遗嘱中,不可以作为遗产受益人的是( )。
旅游者享有获得赔偿权。下列选项中,表述正确的是()
按情绪发生的速度、强度和持续时间对情绪的划分叫()。
一定条件下,制约教育性质和发展方向的最直接的社会因素是政治经济制度。
当生产关系完全不适应生产力发展的时候,阻挠生产关系的变革所引起的后果是
下列关于OSPF协议的描述中,错误的是
在软件开发中,需求分析阶段产生的主要文档是
A_____nousseronsinstallédansnotrenouvelappartement.
最新回复
(
0
)