首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(χ),φ2(χ),φ3(χ)为二阶非齐次线性方程y〞+a1(χ)y′+a2(χ)y=f(χ)的三个线性无关解,则该方程的通解为( ).
设φ1(χ),φ2(χ),φ3(χ)为二阶非齐次线性方程y〞+a1(χ)y′+a2(χ)y=f(χ)的三个线性无关解,则该方程的通解为( ).
admin
2019-03-14
37
问题
设φ
1
(χ),φ
2
(χ),φ
3
(χ)为二阶非齐次线性方程y〞+a
1
(χ)y′+a
2
(χ)y=f(χ)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(χ)+φ
2
(χ)]+C
2
φ
3
(χ)
B、C
1
[φ
1
(χ)-φ
2
(χ)]+C
2
φ
3
(χ)
C、C
1
[φ
1
(χ)+φ
2
(χ)]+C
2
[φ
1
(χ)-φ
3
(χ)]
D、C
1
φ
1
(χ)+C
2
φ
2
(χ)+C
3
φ
3
(χ),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(χ),φ
2
(χ),φ
3
(χ)为方程y〞+a
1
(χ)y′+a
2
(χ)y=f(χ)的三个线性无关解,
所以φ
1
(χ)-φ
3
(χ),φ
2
(χ)-φ
3
(χ)为方程y〞+a
1
(χ)y′+a
2
(χ)y=0的两个线性无关解,
于是方程y〞+a
1
(χ)y′+a
2
(χ)y=f(χ)的通解为
C
1
[φ
1
(χ)-φ
3
(χ)]+C
2
[φ
2
(χ)-φ
3
(χ)]+φ
3
(χ)
即C
1
φ
1
(χ)+C
2
φ
2
(χ)+C
3
φ
3
(χ),
其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/edj4777K
0
考研数学二
相关试题推荐
已知(χ-1)y〞-χy′+y=0的一个解是y1=χ,又知=eχ-(χ2+χ+1),y*=-χ2-1均是(χ-1)y〞-χy′+y=(χ-1)2的解,则此方程的通解是y=_______.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+b)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)B不能由α1,α2,α3,α4线性表示?(Ⅱ)B能用α1,α2,α3,α4线性表
设n阶矩阵A,B满足AB=aA+bB.其中ab≠0,证明(1)A-bE和B-aE都可逆.(2)AB=BA.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知以2π为周期的周期函数f(χ)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(χ)=(sinχ-1)2)f(χ),证明使得F〞(χ0)=0.
求极限
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α2,Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的。
已知函数y=f(x)在其定义域内可导,它的图形如图2.3所示,则其导函数y=f’(x)的图形为
设y=f(x)可导,且y’≠0.(Ⅰ)若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(x)二阶可导,则=________.
随机试题
选举的平等原则首先表现在()
患者女性30岁,右腮腺区反复肿胀两周,与进食有关,可自行消退。此病例最可能的诊断是
【背景资料】某住宅工程,建筑面积1.2万平方米,地下1层,地上12层,剪力墙结构。公共区域及室内地面装修为石材,墙、顶饰面均为涂料。工程东侧距基坑上口线8m处有一座六层老旧砖混结构住宅,市政管线从两建筑间穿过,为了保证既有住宅的安全,项目部对东侧
背景材料: 公路工程设计变更,指工程初步设计批准之日起至竣工验收正式交付使用之日止,对已批准的初步设计文件、技术设计文件或施工图设计文件所进行的修改、完善等活动。为加强公路工程建设管理,规范公路工程设计变更行为,保证公路工程质量,保护人民生命及财产安全
海关征税中的减免税不包括( )。
“朝鲜”的原意是()。
战国后期对篆书结构和书写方法进行了简化改造,形成的新的书体是()。
人民群众是历史的创造者的观点()。
假定一经济社会生产5种产品,其2010年和2012年的产量和价格如下表5.4所示。试计算:若把2010年作为基年,求2012年的实际国内生产总值;
邓小平指出,毛主席最伟大的功绩是把马列主义的普遍原理同中国革命实际相结合,指出了中国夺取革命胜利的新道路。请阐述毛泽东新民主主义理论主要内容及其在马克思主义中国化进程中的历史地位。
最新回复
(
0
)