首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若向量组α1=[1,1,2]T,α2=[1,a,3]T,α3=[2,0,1]T,α4=[a,2,1]T线性相关,则a为________.
若向量组α1=[1,1,2]T,α2=[1,a,3]T,α3=[2,0,1]T,α4=[a,2,1]T线性相关,则a为________.
admin
2021-07-27
59
问题
若向量组α
1
=[1,1,2]
T
,α
2
=[1,a,3]
T
,α
3
=[2,0,1]
T
,α
4
=[a,2,1]
T
线性相关,则a为________.
选项
答案
任意常数
解析
由向量组的线性相关性定常数,求解时应把握住向量组的维数和向量的个数这两个数字.一般地,当向量个数小于向量的维数时,可以将向量组组成矩阵,通过初等变换定值,或由线性相关性的定义式对对应方程组求解并讨论定值;当向量个数等于向量的维数时.可以将向量组组成行列式定值,也可以由线性相关性的定义式对对应方程组求解讨论定值;当向量个数大于向量的维数时,无论待定常数取什么值,向量组都必定相关。因此,题中向量个数大于维数,向量组必相关,此时a可以取任意常数.
转载请注明原文地址:https://kaotiyun.com/show/ehy4777K
0
考研数学二
相关试题推荐
没线性方程组AX=kβ1+β2有解,其中A则k为().
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设为正项级数,则下列结论正确的是()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
随机试题
Whohasn’teverfeltasongpullingattheirheartstrings?【B16】_______________Butthereasonsforthisarefarfromobvious.
只要人类社会存在,就存在着教育,这体现了教育的【】
间变性肿瘤是指
钢坯中厚板的原料堆放时,垛高不能超过()m。
下列关于会计人员从业资格管理的基本要求说法不正确的有()。
张某向王某借款10万元用于购房,由于彼此是好朋友,便没有立书面字据,则双方之间的借款合同自王某提供借款时生效。()
“失之东隅,收之桑榆”说明的是适宜性教学法的()。
《人民警察法》规定,公安机关因侦查犯罪的需要,根据国家有关规定,经过严格的批准手续,可以采取技术侦察措施。()
法国人文主义教育者拉伯雷撰写了
求下列向量组的一个极大线性无关组.并用极大线性无关组线性表出该向量组中其它向量:α1=(1,2,3,一4),α2=(2,3,一4,1),α3=(2,一5,8,一3),α4=(5,26,一9,一12),α5=(3,一4,1,2).
最新回复
(
0
)