首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=∫-11|x-t|(e-1+1),讨论F(x)在[-1,1]上的零点个数。
设F(x)=∫-11|x-t|(e-1+1),讨论F(x)在[-1,1]上的零点个数。
admin
2021-07-15
91
问题
设F(x)=∫
-1
1
|x-t|
(e
-1
+1),讨论F(x)在[-1,1]上的零点个数。
选项
答案
F(x)=∫
-1
x
(x-t)[*]dt+∫
x
1
(t-x)[*]dt-[*](e
-1
+1) =x∫
-1
x
[*]dt-∫
-1
x
t[*]dt+∫
x
1
t[*]dt-x∫
x
1
[*]dt-[*](e
-1
+1) F’(x)=∫
-1
x
[*]dt+x[*]-x[*]-x[*]-∫
x
1
[*]dt+x[*] =∫
-1
x
[*]dt-∫
x
1
[*]dt 对第二个积分作变量替换,t=-u,有 F’(x)=∫
-1
x
[*]dt+∫
-x
-1
[*]du=∫
-x
x
[*]dt=2∫
0
x
[*]dt. 当0<x≤1时,F’(x)>0; 当-1≤x<0时,F’(x)<0; 所以在区间[-1,0]上F(x)严格单调减少,在区间[0,1]上F(x)严格单调增加,此外, F(-1)=∫
-1
1
t[*]dt+∫
-1
1
[*]dt-[*](e
-1
+1)=0+2∫
0
1
[*]dt-[*](e
-1
+1) >2∫
0
1
e
-t
dt-[*](e
-1
+1)=[*]e
-1
>0 F(0)=∫
-1
1
|t|[*]dt-[*](e
-1
+1)=2∫
0
1
t[*]dt-[*](e
-1
+1) =-e
-1
+1-[*](e
-1
+1)=[*]e
-1
<0 F(1)=∫
-1
1
[*]dt-∫
-1
1
t[*]dt-[*](e
-1
+1) =2∫
0
1
[*]dt-[*](e
-1
+1)>0 由连续函数零点定理可知,F(x)在区间(-1,0)与(0,1)内至少各有一个零点,再由单调性可知,在这两个区间内正好各有一个零点,共有且仅有两个零点。
解析
转载请注明原文地址:https://kaotiyun.com/show/emy4777K
0
考研数学二
相关试题推荐
3
A、 B、 C、 D、 D
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
若,则积分区域D可以是[].
设常数k>0,函数在(0,+∞)内零点个数为()
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
试就常数k的不同取值,讨论方程xe-x一k=0的实根的个数.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设A是n阶矩阵,下列命题错误的是().
随机试题
Wehaven’tenoughtimeforstudy,______relaxation.
最早在中国传播和研究马克思主义的先驱是()
当某一恒定刺激持续作用于感受器时,其传入神经纤维的动作电位频率会逐渐下降的现象,称为感受器的
急性阑尾炎术前病情观察下列错误的是()
在对国家基本养老计划的财政补贴中,哪项是国家的间接支付()
未经权利人许可和授权,他人不得使用,这体现了专利权的()特性。
2×17年1月,某事业单位启动一项科研项目。当年收到上级主管部门拨付的非财政专项资金1000万元,为该项目发生事业支出960万元。2×17年12月,项目结项,经上级主管部门批准,该项目的结余资金留归事业单位使用。假定不考虑其他因素,年末,该事业单位应转入“
下列关于浮点数的说法中,正确的是()。
下列人员中,不适用假释的有()。
TheEnglishlanguageexistsinaconditionofeverlastingdanger,itsAmericanbranchmostparticularly,assaultedasitisfrom
最新回复
(
0
)