首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
admin
2019-08-12
112
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(I)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(I)的解;
③(I)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(I)的解.
其中正确的是 ( )
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
X)=0,故(I)的解必是(Ⅱ)的解,也即①正确,③错误.
当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零,可以证明这种情况下x,Ax,…,A
n
x是线性无关的.由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(I)的解,故②正确,④错误.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/kcN4777K
0
考研数学二
相关试题推荐
咒维向量组α1,α2,…,αm(3≤m≤n)线性无关的充要条件是
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求出最大值点及最小值点.
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形为
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
确定常数a和b的值,使f(χ)=χ-(a+b)sinχ当χ→0时是χ的5阶无穷小量.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
已知曲线L的方程(t≥0)。求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
在极坐标变换下将f(χ,y)dσ化为累次积分,其中D为:χ2+y2≤2ax与χ2+y2≤2ay的公共部分(a>0).
随机试题
在PowerPoint2003中,要对幻灯片中的各个对象分别设置动画效果,应使用“幻灯片放映”的________________命令。
乳腺增生增强特点不正确的是
以下消毒剂不能用于口腔黏膜消毒的是
可以激活蛋白激酶A的物质是
深基坑土方开挖,当施工现场不具备放坡条件,放坡无法保证施工安全,通过放坡及加设临时支撑已经不能满足施工需要时,一般采用支护结构进行临时支挡,以保证基坑的土壁稳定。下列关于支护结构选型适用条件的说法中,正确的是()。
甲股份有限公司(以下简称“甲公司”)于20×3年开始对高管人员进行股权激励。具体情况如下:(1)20×3年1月2日,甲公司与50名高管人员签订股权激励协议并经股东大会批准。协议约定:甲公司向每名高管授予120000份股票期权,每份期权于到期日可以8元/股
社会主义市场经济运行的微观基础是()。
下述属于城市用地评定一类用地要求的是()。
MIPS是衡量CPU处理速度的一种常用指标,它的含义是:
ThefirsttimeIleftmymother,Iwasfiveyearsold.ShetoldmeIcouldn’tgoouttoplay【C1】_______Ipickedupmytoys.Who
最新回复
(
0
)