首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ.
[2006年] 设三阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ.
admin
2019-07-23
36
问题
[2006年] 设三阶实对称矩阵A的各行元素之和为3,向量α
1
=[一1,2,一1]
T
,α
2
=[0,一1,1]
T
都是齐次方程组AX=0的解.
求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ.
选项
答案
因0为A的二重特征值,现将属于多重特征值的特征向量α
1
,α
2
正交化(因α
1
,α
2
不正交),使用施密特正交化的方法得到 β
1
=α
1
,[*] 则β
1
,β
2
正交.显然α
0
与β
1
,β
2
都正交,因它们是实对称矩阵不同特征值的特征向量. 下面将α
0
,β
1
,β
2
单位化,得到 [*] 令Q=[η
0
,η
1
,η
2
],则Q为正交矩阵,且有Q
T
AQ=Q
-1
AQ=diag(3,0,0)=Λ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ewc4777K
0
考研数学一
相关试题推荐
设f(χ)在χ=1处连续,=-3.证明:f(χ)在χ=1处可导,并求f′(1).
求直线在平面∏:x一y+2z一1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
判别下列级数的敛散性
设函数x=x(y)由方程x(y-x)2=y所确定,试求不定积分
求曲线处的切线与y轴的夹角.
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
求曲线积分I=∫C(x+y)dx+(3x+y)dy+zdz,其中C为闭曲线x=asin2t,y=2acostsint,z=acos2t(0≤t≤π),C的方向按t从0到π的方向.
设X服从参数为2的指数分布,求Y=1-e-2x的概率密度fY(y)。
计算下列反常积分(广义积分)的值。
随机试题
利华食品有限公司由甲、乙、丙、丁四个股东出资设立,注册资本10万元,公司登记机关于2006年1月10日签发公司营业执照。根据公司法的规定回答以下问题:公司不设董事会和监事会,甲为执行董事,丁为临事。如果甲的出资为5万元,丁的出资为4万元,丙和乙的出资各
99mTc标记红细胞消化道出血显像可以探测到出血率低达______的出血部位
西河柳的别名有()
居所地在甲区而户籍地在乙区的公民,被所在地为丙区的公安局收容审查。该公民对此不服而直接起诉于某法院()。
2014年第一季度,甲商业银行有关业务及收支情况如下:(1)取得一般贷款业务利息收入570万元,支付存款利息380万元。(2)取得债券转让收入2000万元,该债券的买人价位1800万元,证券公司取得佣金1.4万元。(3)取得咨询收入30万元,出纳长款
工资制度总体设计的前期工作包括()。(2007年11月二级真题)
给定资料1.“一个好媳妇,三代好子孙。”媳妇好不好,上台夸夸就知道。每年春天,X市Y区各个乡镇社区都要举行“夸媳妇比赛”。瑞霞是张庄村的年轻媳妇。五年前,刚进婆家门,她就承担起操持家务、照顾卧病在床的婆婆的重任。一日三餐按时将可口的饭菜端到全家
持续不断的“救火”,解决现场中出现的紧急问题,这意味着管理者应该开始着手考虑______了。
本当は好きな________、冷たい態度を取る。
HintsandTipstoSaveMoneyA)Spendless.Thisisnotoversimplifyingthebestwaytosavemoney!Itisessentialifyoua
最新回复
(
0
)