首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 证明:向量组α1,α2,…,αn与向量组β1,β2,…,βn等价.
设 证明:向量组α1,α2,…,αn与向量组β1,β2,…,βn等价.
admin
2020-06-05
39
问题
设
证明:向量组α
1
,α
2
,…,α
n
与向量组β
1
,β
2
,…,β
n
等价.
选项
答案
将已知关系写成 (β
1
,β
2
,…,β
n
)=(α
1
,α
2
,…,α
n
)[*] 将上式记为B=AK.因为 |K|=[*]=(﹣1)
n-1
(n-1)≠0 所以K可逆,故有A=BK
﹣1
.由B=AK和A=BK
﹣1
可知向量组α
1
,α
2
,…,α
n
与向量组β
1
,β
2
,…,β
n
相互线性表示.因此向量组α
1
,α
2
,…,α
n
与向量组β
1
,β
2
,…,β
n
等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/f8v4777K
0
考研数学一
相关试题推荐
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设A,B均是3阶非零矩阵,满足AB=O,其中则()
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
要使都是线性方程组AX=0的解,只要系数矩阵A为
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
n元线性方程组Aχ=B有两个解a,c,则下列方程的解是a-c的是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
下列哪部作品揭露了封建贵族的罪恶
(2017年第157题)重症急性肾衰竭透析治疗的方法有
某病人,男,58岁无痛性全程肉眼血尿半个月,B超检查发现肾脏有一5cm×6cm大小实质性占位。
下列药物禁用于ITP患者的是
营养不良测定腹壁皮下脂肪厚度的部位
以下哪种材料可以作为泡沫混凝土的泡沫剂?[2007年第031题]
依据《安全生产法》的规定,从业人员的工伤保险费由()缴纳。
设备工程中的总承包主要有以下形式:( )。
莫扎特对音乐的最大贡献体现在歌剧领域,他主张“________”,一生创作了很多令世人为之震撼的作品。
Sandra’smethodprovedtobe______inhandlingmultipletasksatonce.
最新回复
(
0
)