首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是3阶非零矩阵,满足AB=O,其中则 ( )
设A,B均是3阶非零矩阵,满足AB=O,其中则 ( )
admin
2019-05-15
38
问题
设A,B均是3阶非零矩阵,满足AB=O,其中
则 ( )
选项
A、a=-1时,必有r(A)=1
B、a≠-1时,必有r(A)=2
C、a=2时,必有r(A)=1
D、a≠2时,必有r(A)=2
答案
C
解析
A是非零矩阵,r(A)>0.
AB=O,r(A)+r(B)≤3,故r(B)≤2.
当a=-1时,r(B)-1=>r(A)=1或2,(A)不成立.
当a≠-1时,必有a=2,r(b)=2=>r(A)=1,(B)不成立.
当a≠2时,必有a=-1,r(B)=1=>r(A)=1或2,(D)不成立.
由排除法,故应选C.当a=2时.r(B)=2=>r(A)=1,故C正确.
转载请注明原文地址:https://kaotiyun.com/show/czc4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)在区域D={(x,y)|0≤x≤1,0≤y≤2}上服从均匀分布,令Z=min(X,Y),求EZ与DZ。
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:Z的概率分布;
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线
设A是m×n矩阵,则下列命题正确的是
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明:方程f(x)=0在区间(0,1)内至少存在一个实根;
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式.
独立重复试验中事件A发生的概率为1/3,若随机变量x表示事件A第一次发生时前面已经发生的试验次数,则EX=_____________.
设随机变量X服从均值为10,均方差为0.02的正态分布.已知Ф(χ)=∫-∞χdu.Ф(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为_______.
随机试题
Nowshemustworktwiceashardtocatchupwithothers.
红细胞沉降率加速主要是由于()(2002年)
下面四句话中表达不正确的是()。
某采购中心为某中学采购一批教学用实验设备,鉴于所购实验设备较为简易,且规格、型号、标准一致,国内产品质量过关、货源充足,价格稳定等特点,决定采用询价方式进行采购。他们询价的步骤是:第一步,从本中心工作人员中抽调6人组成三个询价小组;第二步,将一定范围内的1
房地产转让是指房地产权利人通过买卖、赠予或者其他合法方式将其房地产转移给他人的行为。其中的其他合法方式主要包括()。
某业主与W了程公司依据FIDIC条款格式,订立了某机电安装工程的施工合同。合同规定:采用单价合同,因设计变更而发生的工程量变化,按实调整;同时视具体的变,动情况,业主与承包商商谈变更后的单价。合同工期为18天,工期每提前1天奖励2000元,每拖后1天罚款4
工程建设法律关系的构成要素包括( )。
2006年底,全国广告经营额达1573亿元,比上年增长156.7亿元,增长率达11.1%,增幅比上年下降了0.9个百分点。2006年底,全国共有广告经营单位143129户,比上年增加17735户,增长14.1%;广告从业人员1040099人,比上年增加99
简述从欧共体成立到20世纪七八十年代.西欧同美国的关系。
第一部用马克思主义观点系统阐述教育理论的著作是
最新回复
(
0
)