首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ=11,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B.
设3阶实对称矩阵A的特征值λ=11,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B.
admin
2020-09-25
48
问题
设3阶实对称矩阵A的特征值λ=
1
1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=λ
1
α
1
,知Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
, 故α
1
是B的属于特征值一2的一个特征向量. 因为A的全部特征值为λ
1
,λ
2
,λ
3
,所以B的全部特征值为λ
i
5
一4λ
i
3
+1(i=1,2,3),即B的全部特征值为一2,1,1. 由Bα
1
=一2α
1
,知B的属于特征值一2的全部特征向量为k
1
α
1
,其中k
1
是不为零的任意常数. 因为A是实对称矩阵,所以B也是实对称矩阵.设(x
1
,x
2
,x
3
)
T
为B的属于特征值1的任一特征向量.因为实对称矩阵属于不同特征值的特征向量正交,所以(x
1
,x
2
,x
3
)α
1
=0,即x
1
一x
2
+x
3
=0. 解得该方程组的基础解系为α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
,故B的属于特征值1的全部特征向量为k
2
α
2
+k
3
α
3
,其中k
2
,k
3
为不全为零的任意常数. (2)令P=(α
1
,α
2
,α
3
)=[*],那么P
-1
=[*] 因为P
-1
BP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fPx4777K
0
考研数学三
相关试题推荐
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
(87年)求矩阵A=的实特征值及对应的特征向量.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12一Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
[2013年]设函数f(x)在[0,+∞)上可导,f(0)=0,且证明:存在a>0,使得f(a)=1;
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
A是n阶方阵,|A|=3.则|(A*)*|=()
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f和一f合同,则必有()
随机试题
含有毒性基团的药物不包括
左右以君贱之也,食以草具。
ABC法中起桥联作用的是
HIV主要破坏的细胞为
荷花能够在()cm的水深下正常生长。
关于隧道爆破作业安全技术要求的说法,错误的是()
进口货物,应当向报关地海关申报纳税。()
有人说公务员需要有激情来产生动力,也有人说公务员最重要的是稳重。请结合你自己谈谈看法。
[*]
公司中有多个部门和多名职员,每个职员只能属于一个部门,一个部门可以有多名职员。则实体部门和职员间的联系是
最新回复
(
0
)