首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
admin
2016-10-21
38
问题
已知n维向量组α
1
,α
2
,…,α
s
线性无关,则n维向量组β
1
,β
2
,…,β
s
也线性无关的充分必要条件为
选项
A、α
1
,α
2
,…,α
s
可用β
1
,β
2
,…,β
s
线性表示.
B、β
1
,β
2
,…,β
s
可用α
1
,α
2
,…,α
s
线性表示.
C、α
1
,α
2
,…,α
s
与β
1
,β
2
,…,β
s
等价.
D、矩阵(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
答案
D
解析
从条件选项A可推出β
1
,β
2
,…,β
s
的秩不小于α
1
,α
2
,…,α
s
的秩s,β
1
,β
2
,…,β
s
线性无关.即选项A是充分条件,但它不是必要条件.
条件选项C也是充分条件,不是必要条件.
条件选项B既非充分的,又非必要的.
两个矩阵等价就是它们类型相同,并且秩相等.现在(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)都是n×s矩阵,(α
1
,α
2
,…,α
s
)的秩为s,于是β
1
,β
2
,…,β
s
线性无关(即矩阵(β
1
,β
2
,…,β
s
)的秩也为s)
(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
转载请注明原文地址:https://kaotiyun.com/show/fTt4777K
0
考研数学二
相关试题推荐
求下列极限:
设y=f(x)是方程y"-2y’+4y=0的一个解,若f(x0)>0,且f’(x0)=0,试判定x0是否是f(x)的极值点?如果x0为f(x)的极值点,是极大值点,还是极小值点?
设f(x)二阶连续可导,f"(0)=4,
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S1+S2达到最小,并求出最小值。
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式验证
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
随机试题
设2阶矩阵A与B相似,其中A=,则数α=__________.
肾全层裂伤前列腺增生
输血过程,发生过敏反应的典型表现是
患者,男性,40岁,患幽门梗阻,为其清除胃内容物时,宜选择
保辜制度
学习包括知识的哪几个过程?()
根据我国有关的法律规定,被代理人死亡后发生()的情况下,委托代理人实施的代理行为仍然有效。
Globalizationisunderstrainasneverbefore.Everywhereitsstressesrumble.Mostofsub-SaharanAfrica,SouthAmerica,theMi
顺序文件时根据记录的(14)来进行存取的文件组织方式,使最简单的文件,如果文件按关键字有序输入,则形成的顺序文件称为顺序有序文件,否则称为顺序无序文件。索引文件可分为索引顺序文件和索引无序文件,其中,索引无序文件是指(15)。直接存取文件又称为哈希文件或散
写信人:WangHaiyang写信人地址:Wanghaiyang@hotmail.com写信时间:2005年8月9日收信人:Mr.Johnson收信人e-mail地址:admission_office@hotmail.c
最新回复
(
0
)