首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
admin
2016-10-21
71
问题
已知n维向量组α
1
,α
2
,…,α
s
线性无关,则n维向量组β
1
,β
2
,…,β
s
也线性无关的充分必要条件为
选项
A、α
1
,α
2
,…,α
s
可用β
1
,β
2
,…,β
s
线性表示.
B、β
1
,β
2
,…,β
s
可用α
1
,α
2
,…,α
s
线性表示.
C、α
1
,α
2
,…,α
s
与β
1
,β
2
,…,β
s
等价.
D、矩阵(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
答案
D
解析
从条件选项A可推出β
1
,β
2
,…,β
s
的秩不小于α
1
,α
2
,…,α
s
的秩s,β
1
,β
2
,…,β
s
线性无关.即选项A是充分条件,但它不是必要条件.
条件选项C也是充分条件,不是必要条件.
条件选项B既非充分的,又非必要的.
两个矩阵等价就是它们类型相同,并且秩相等.现在(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)都是n×s矩阵,(α
1
,α
2
,…,α
s
)的秩为s,于是β
1
,β
2
,…,β
s
线性无关(即矩阵(β
1
,β
2
,…,β
s
)的秩也为s)
(α
1
,α
2
,…,α
s
)和(β
1
,β
2
,…,β
s
)等价.
转载请注明原文地址:https://kaotiyun.com/show/fTt4777K
0
考研数学二
相关试题推荐
求下列极限:
求极限
取ε0=1,根据极限定义,存在N>0,当n>N时,有|an-A|<1,所以|an|≤|A|+1.取M=max{|a1|,|a2|,…,|an|,|A|+1},则对一切的n,有|an|≤M.
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
设其中f(x)有连续的导数,且f(0)=0.求F’(x),并研究F’(x)在x=0处的连续性。
设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限是________。
设A,B为同阶可逆矩阵,则().
设,则f(x)中x4与x3的系数分别是
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
(2012年试题,三)设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
重型圆锥动力触探试验落锤的落距为76cm()。
根据《国务院关于投资体制改革的决定》,特别重大的政府投资项目应实行()制度。
张某、李某、丙有限责任公司和丁有限责任公司共同出资设立了A有限合伙企业,丙、丁两家公司为有限合伙人。该企业在经营过程中出现以下问题:(1)丙公司认为自己出资最多,应当成为合伙企业事务执行人,但张某和李某不同意,最后决定由张某担任合伙企业事务执行人。(2
甲企业与乙银行签订借款合同,借款合同约定:甲企业向乙银行借款1000万元,借款期限自2016年1月1日至2016年12月31日。甲企业将其现有的以及将有的生产设备、原材料、半成品、产品一并抵押给乙银行,双方于2016年1月4日签订了书面抵押合同,并于201
“ECRS”分析方法是企业现场管理咨询过程中经常使用的方法之一,其主要内容是()。
某大型律师事务所招聘工作人员,最不可能被招聘上的是没有通过我国司法考试,或者完全没有办理过法律事务实践经验的人。在可能被招聘的人中,懂外语或硕士以上学历的人被聘用的可能性将大大增加。如果上述断定是真的,则下列人员中最有可能被招聘上的是()。
下面的三角形表示某省五种产业的数量按地域划分(城区、郊区、乡村)所占百分比。图上的字符表示各种工业,三角形的顶点表示100%,与该顶点相对的基线表示0%。例如,该省所有的加工企业中,约有70%地处城市,5%位于乡村,25%在郊区。在郊区的金融企业
设f′(x)=arcsin(x-1)2,f(0)=0,求f(x)dx.
What’stheairportlike?
Experiencetwogreattheme(主题)parksinonegreatscenicspots—Disney’sCaliforniaAdventureparkandfightnextdoorDisneylan
最新回复
(
0
)