首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,6+3,5)T. 问: a,b为何值时,β可由α1,α2,α3,α4线性表示,且表示式不唯一,并写出
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,6+3,5)T. 问: a,b为何值时,β可由α1,α2,α3,α4线性表示,且表示式不唯一,并写出
admin
2019-12-26
45
问题
已知向量组α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,一1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,6+3,5)
T
.
问:
a,b为何值时,β可由α
1
,α
2
,α
3
,α
4
线性表示,且表示式不唯一,并写出表示式.
选项
答案
当a=-1时,b=0时,r(A)=r(B)=2,方程组有无穷多个解,所以β能由α
1
,α
2
,α
3
,α
4
线性表示,且表示法 不唯一,此时 [*] 于是方程组的通解为[*]k
1
,k
2
为任意常数. 故β=(-2k
1
+k
2
)α
1
+(k
1
-2k
2
+1)α
2
+k
1
α
3
+k
2
α
4
,其中k
1
,k
2
为任意的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1GD4777K
0
考研数学三
相关试题推荐
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设A与B分别是m,n阶矩阵,证明=(一1)mn|A||B|.
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=______.答案
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,其中a为常数.若n为整数,则f(n)=_______.
设函数=________.
求下列幂级数的收敛域及其和函数:
设A是主对角元为0的4阶实对称矩阵,E是4阶单位矩阵,B=.且E+AB是不可逆的对称矩阵,求A.
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
计算二重积分,其中D是由曲线和直线y=一x围成的区域.
(1)取εn=1,由[*]=0,根据极限的定义,存在N>0,当n>N时,[*]收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]收敛(收敛级数添加有限项不改变敛散性).(2)根据(1),当n>N时,有0≤an<bn,因为[*]发散,由比较审敛法
随机试题
介于直线一职能制和事业部制之间的结构形式是()
濡脉与弱脉的主要不同点,在于
经济费用和效益计算的原则包括:支付意愿原则、受偿意愿原则、机会成本原则、()。
一般资料:求助者,男性,40岁,已婚,大学文化,公司高级管理人员。案例介绍:求助者非常孝顺母亲,经常带母亲或出钱让母亲去旅游。不料飞机失事,永远地失去了母亲。求助者认为如果不是自己积极张罗为母亲报名、支持母亲出去,母亲就不会死,是自己害死了母亲,
习近平总书记在很多场合都讲过。治理一个国家、一个社会,关键是要立规矩、讲规矩、守规矩。重庆市委书记孙政才同志,也多次强调党员干部要讲规矩。你认为,作为一名公务员应该怎么做?
党政联合发文,只能标明()。
教师:教室:教育
某宾馆一层客房比二层客房少5间,某旅游团48人,若全安排在第一层,每间。4人,房间不够,每问5人,则有房间住不满;若全安排在第二层,每间3人,房间不够,每间住4人。则有房间住不满。该宾馆一层有客房多少间?
奥苏伯尔认为,学生学习的实质是()。
Whatarethespeakerstalkingabout?
最新回复
(
0
)