首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α2=(a一1,一a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0的值
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α2=(a一1,一a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0的值
admin
2019-12-26
20
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,a+1,2)
T
,α
2
=(a一1,一a,1)
T
分别是λ
1
,λ
2
对应的特征向量.又A的伴随矩阵A
*
有一个特征值为λ
0
,属于λ
0
的特征向量为α
0
=(2,一5a,2a+1)
T
.试求a、λ
0
的值,并求矩阵A.
选项
答案
由于|A|=λ
1
λ
2
λ
3
=-2,故A可逆. 由于α
0
是A
*
的属于λ
0
的特征向量.所以A
*
α
0
=λ
0
α
0
.于是AA
*
α
0
=λ
0
Aα
0
,即|A|α
0
=λ
0
Aα
0
,亦即-2α
0
=λ
0
Aα
0
.故[*]从而[*]是A的特征值,α
0
是A的关于[*]对应的特征向量. 又由于α
1
,α
2
为实对称矩阵A的不同特征值的特征向量,故α
1
,α
2
正交,即α
1
T
α
2
=0,得a=±1. 无论a=1还是a=-1,则有α
0
与α
1
,α
2
中任何一个都线性无关,所以α
0
应是矩阵A的属于λ
3
的特征向量,于是有[*]从而λ
0
=2.且α
0
与α
1
正交,即α
0
T
α
1
=5a
2
+a-4=0,则[*]或a=-1,于是a=-1,λ
0
=2. 令[*]则P可逆,且 [*] 所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BUD4777K
0
考研数学三
相关试题推荐
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得(e2a+ea+b+e2b)[f(ξ)+f’(ξ)]=3e3η—ξ.
已知∫01f(tx)dt=f(x)+1,则f(x)=_________.
设随机变量X与Y独立同分布,且都服从p=的0一1分布,则随机变量Z=max{X,Y}的分布律为________。
已知矩阵A=有两个线性无关的特征向量,则a=______.
设矩阵则A3的秩为________。
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=________.
讨论函数f(x)=(x>0)的连续性.
(1995年)设试讨论f(x)在x=0处的连续性和可导性.
随机试题
影响领导风格有效性的主要工作环境因素包括_____、_____、_____。
A.合成尿素B.合成丙氨酸C.合成非必需氨基酸D.合成谷氨酰胺E.合成必需氨基酸体内氨的主要代谢去路是
感觉的特异投射系统能形成特定感觉,其主要的原因是
《公开募集证券投资基金运作管理办法》生效的时间是()。
下列句子中没有语病的一项是()。
这种简单化的发展难免带来_______风险。城市规划目光短浅,建设只求速度重_______,设施管理维护职责混乱。我们看到一座座摩天楼、商业区、产业园犹如雨后春笋般出现,而这些_______的奢华景观却经不起一场暴雨的考验。依次填入画横线部分最恰当的一项
市场经济发达国家的实践充分表明,假冒伪劣产品的泛滥程度与市场经济的发展水平呈负相关变化。市场经济内在的竞争机制本身就倡导以公平与质量取胜,只有符合社会需求的高质量商品才能得到社会的认可。由此可见:
D
Quantumwillstillbeonairasthelastprogramsofitarestillinthemakingandaretobeshownasscheduled.Jarvisreveal
A、BeijingEducationalPress.B、LiaoningEducationalPress.C、LondonGuinnessWorldRecord.D、IrelandGuinnessWorldRecord.C
最新回复
(
0
)