首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为_______.
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为_______.
admin
2019-08-23
48
问题
设A为n阶矩阵,且|A|=0,A
ki
≠0,则AX=0的通解为_______.
选项
答案
C(A
k1
,A
k2
,…,A
ki
…,A
kn
)
T
(C为任意常数).
解析
因为|A|=0,所以r(A)<n,又因为A
ki
≠0,所以r(A
*
)≥1,从而r(A)=n-1,AX=0的基础解系含有一个线性无关的解向量,又AA
*
=|A|E=0,所以A
*
的列向量为方程组AX=0的解向量,故AX=0的通解为C(A
k1
,A
k2
,…,A
ki
…,A
kn
)
T
(C为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/ABA4777K
0
考研数学二
相关试题推荐
求二重积分max{xy,1}dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
求原点到曲面(x一y)2+z2=1的最短距离。
已知方程组有解,证明方程组无解。[img][/img]
设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)()
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为______。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
证明函数恒等式,x∈(一1,1)。
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时()
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
经常采用压料方式放料的反应器是()。
FarmerEdRawlingssmilesashelooksathisorangetrees.TheyoungorangesaregrowingwellinFlorida’sweather.Warmsunshin
肝细胞性黄疸患者伴随症状常有
下列各项关于投资性房地产计提折旧或摊销的表述中正确的有()。
某工业企业职工共30人,企业的资产总额为300万元,上年亏损52万元,2019年企业有关生产、经营资料如下:(1)取得产品销售收入230万元、国债利息收入23万元,金融债券利息收入39万元。(2)发生产品销售成本100万元;发生产品销售税金及附加5.6
我国自主研制的综合技术处于国际领先水平计算机系统于2014年6月23日以每秒33.86千万亿次的浮点运算速度获得世界超算“三连冠”。它是()。
扩张性货币政策主要指()。
一个民族的建筑有它自己的构造规则或组合方式,如同语言的“文法”。中国建筑就具有特殊的“文法”。我们的祖先在选择了木料之后逐渐了解了木料的特长,创始了骨架结构初步方法——中国系统的“梁架”。这以后他们发现了木料性能上的弱点。当水平的梁枋将重量转移到
作为一名大学毕业生,如果能够具备较扎实的专业知识和基本的社会交往能力,或者是在就业市场上能够作出适合自己的选择,那么,就不可能找不到自己的位置。小王是一名大学毕业生。他没有找到工作职位,那么根据上述观点能够推出以下哪项结论?
Imagineeatingeverythingdeliciousyouwant—withnoneofthefat.Thatwouldbegreat,wouldn’tit?New"fakefat"products
最新回复
(
0
)