首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列关于向量组线性相关性的说法正确的个数为( ) ①若α1,α2,…,αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0。 ②如果α1,α2,…,αn线性无关,则对任意不全为零的常数k1,k2,…,kn,
下列关于向量组线性相关性的说法正确的个数为( ) ①若α1,α2,…,αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0。 ②如果α1,α2,…,αn线性无关,则对任意不全为零的常数k1,k2,…,kn,
admin
2019-08-12
41
问题
下列关于向量组线性相关性的说法正确的个数为( )
①若α
1
,α
2
,…,α
n
线性相关,则存在全不为零的常数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
②如果α
1
,α
2
,…,α
n
线性无关,则对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
≠0。
③如果α
1
,α
2
,…,α
n
线性无关,则由k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0可以推出k
1
=k
2
=…k
n
=0。
④如果α
1
,α
2
,…,α
n
线性相关,则对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
对于①,线性相关的定义是:存在不全为零的常数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。不全为零与全不为零不等价,故①错。
②和③都是向量组线性无关的等价描述,正确。
对于④,线性相关性只是强调不全为零的常数k
1
,k
2
,…,k
n
的存在性,并不一定要对任意不全为零的k
1
,k
2
,…,k
n
都满足k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,故④错误。事实上,当且仅当α
1
,α
2
,…,α
n
全为零向量时,才能满足对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
综上所述,正确的只有两个,故选B。
转载请注明原文地址:https://kaotiyun.com/show/fiN4777K
0
考研数学二
相关试题推荐
定积分
计算其中
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
求极限:
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
以下四个命题中,正确的是
已知随机变量X的概率分布为P{X=k}=,k=0,1,2,…,求E(X2)和D(X).
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977,((2)=0.977.)
随机试题
恩格尔定律表明,随着消费者收入的提高,恩格尔系数将_______。
根据巷道支护验收规范的规定,巷道施工作业中,掘进工作面与永久支护间的距离不应大于()m。
在先张法预应力中,预应力筋张拉后以()为支点进行锚固。
下列说法中正确的是()。
Theideathatmusicmakesyousmarterhasreceivedconsiderableattentionfromscholarsandthemedia.Currentinterestin【1】betw
2014年上半年,上海市建筑企业直接同建设单位签订合同额11310.77亿元,其中本年新签合同额3934.43亿元,比去年同期增长25.6%。全市特级和一级资质建筑企业本年新签合同额1849.7亿元和1495.42亿元,分别增长39.7%和20.4%,而二
Theylearntoreadatage2,playBachat4,breezethroughcalculusat6,andspeakforeignlanguagesfluentlyby8.Theirclas
执行如下程序,最后S的显示值为()。sum=0k=1m=5D0WHILEsum
数据库系统的三级模式不包括
Usingpointsandexamplesfromthelecture,explainwhythehumanhandisavaluablepossession.
最新回复
(
0
)