首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex成立,又设f’(0)存在且等于a(a≠0).求f(x).
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex成立,又设f’(0)存在且等于a(a≠0).求f(x).
admin
2018-08-22
53
问题
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)e
y
+f(y)e
x
成立,又设f’(0)存在且等于a(a≠0).求f(x).
选项
答案
由f’(0)存在,设法去证对一切x,f’(x)存在,并求出f(x). 将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得 f(x)=f(x)+f(0)e
x
, 所以f(0)=0. [*] 令△x→0,得 f’(x)=f(x)+e
x
f’(0)=f(x)+ae
x
, 所以f’(x)存在.解此一阶非齐次线性微分方程,得 [*] 因f(0)=0,所以C=0,从而得f(x)=ace
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/sWj4777K
0
考研数学二
相关试题推荐
设D由直线x=0,y=0,x+y=1围成,已知∫01f(x)dx=∫01xf(x)dx,则f(x)dxdy=()
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.试证明:
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.写出该二次型;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设变换求常数a.
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为(1)证明事件A,B相互独立的充分必要条件是其相关系数为零;(2)利用随机变量相关系数的基本性质,证明|ρAB|≤1.
设线性方程组试问当a,b为何值时,方程组有唯一解,无解,有无穷多解?并求出无穷多解时的通解.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α1,α2,α3,α4,α5)x=α5的通解.
随机试题
常用的非随机抽样不包括()
金刚烷胺不能治疗哪些疾病:
患者,女,26岁。淋雨后发热、咳嗽。查体:T39℃,左肺听诊有湿哕音。实验室检查:WBC12×109/L。临床拟做痰培养,合格的培养结果可能是
麻黄是治疗下列哪一种病证的主药
男性,20岁。施工时左大腿开放性损伤,未发现骨折,行简单的创口缝合。2天后感到伤部包扎过紧,疼痛剧烈,患肢肿胀明显,缝合处血性液体渗出,恶臭。导致这种感染最主要的原因是
《反洗钱法》的主要内容有()。
出售型房地产开发投资项目,对投资者来说属于(),因此只有建设期而没有经营期。
左边:右边
个体乳酸阈强度是发展无氧耐力训练的最佳强度。()
AdvertisingI.Thedefinitionofadvertising—(1)______butencouragingpresentationofgoodsand(1)______servicesII.The
最新回复
(
0
)