首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断直线L1:和直线L2:x+1=y-1=z是否相交。如果相交求其交点,如果不相交求两直线间距离。
判断直线L1:和直线L2:x+1=y-1=z是否相交。如果相交求其交点,如果不相交求两直线间距离。
admin
2018-12-27
59
问题
判断直线L
1
:
和直线L
2
:x+1=y-1=z是否相交。如果相交求其交点,如果不相交求两直线间距离。
选项
答案
直线L
1
的方向向量s
1
=(1,2,λ),直线L
2
的方向向量为s
2
=(1,1,1),可知L
1
与L
2
不平行。 点A(1,-1,1)为直线L
1
上的点,点B(-1,1,0)为直线L
2
上的点,[*]=(-2,2,-1)。 直线L
1
和L
2
共面的充要条件是向量s
1
,s
2
,[*]混合积为零,即 [*] 当[*]时,直线L
1
与L
2
相交,[*]时,直线L
1
与L
2
异面。 (1)当[*]时,令[*]则 x=1+t,y=-1+2t,[*] 代入x+1=y-1=z得t=4,则L
1
与L
2
的交点为(5,7,6)。 (2)当[*]时,根据两异面直线间的距离公式可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fmM4777K
0
考研数学一
相关试题推荐
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设向量组(I):α1,α2,…,αr线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
设矩阵A=(aij)n×n的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα2=(Ar+2,1,…,Ar+2,n)T……αn-r=(An1,…,Ann)T是
随机变量X可能取的值为一1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
设总体X具有概率密度:f(x)=从此总体中抽得简单样本X1,X2,X3,X4,求T=
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.9?试用切比雪夫不等式和中心极限定理来分别求解.
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.(不熟者可对n=2证明)
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面),A2={掷第二次出现正面),A3={正、反面各出现一次),A4={正面出现两次),则事件()
(1)将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)=__________·(2)设随机变量X1,X2,…,X10。相互独立且Xi~π(i)(i=1,2,…,10),Y=,根据切比雪夫不等式,P{4<y<7}≥_
设则(A*)-1=___________.
随机试题
下列关于营养性缺铁性贫血临床表现的叙述,错误的是
公务员义务和权利的共同特性是()
Thepilotlostcontactwiththemilitarybase,_______theplanecrashedinthedesert.
单纯性甲状腺肿的病因主要是()。
中枢性面瘫的表现是
在DNA复制过程中不能催化磷酸二酯键形成的酶是
对于前期差错更正,企业应当在附注中披露的内容有()。
2010年4月,某市劳动行政部门在对甲公司进行例行检查时,发现甲公司存在以下问题:(1)2009年9月1日,张某发现甲公司未依法为其缴纳社会保险费,当日通知甲公司解除劳动合同。张某自2001年1月1日起开始在甲公司工作,张某的月平均工资为5000元。
教师贾某患有先天性心脏病和癫痫病,发病时无法控制自己的行为,学校校长仅仅粗略了解此事之后就安排贾某担任高三毕业班的班主任。一天贾老师癫痫病发,病发时使路过的小乐同学受到了惊吓,并造成了心理阴影,小乐的父母就该事件起诉学校要求赔偿,在此事件中应当承担责任的是
It’sHardtoCleanBigDataA)KarimKeshayjee,aTorontophysiciananddigitalhealthconsultant,crunchesmountainsofdatafro
最新回复
(
0
)