首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. 若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. 若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2018-08-03
35
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
.
若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
由0=α
1
+2α
2
—α
3
=[α
1
α
2
α
3
][*] 知ξ=[*]是方程组Ax=0的一个解.又由r(A)=2知方程组Ax=0的基础解系所含解向量的个数为3—2=1,所以ξ[*]是方程组Ax=0的一个基础解系. 因为β=α
1
+α
2
+α
3
=[α
1
α
2
α
3
][*]是方程组Ax=β的一个特解,故方程组Ax=β的通解为x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/fug4777K
0
考研数学一
相关试题推荐
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中Dr:r2≤x2+y2≤1.
设盲线l过点M(1,一2,0)且与两条直线l1:,垂直,则l的参数方程为___________.
当x>0时,证明:
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
随机试题
仓库火灾事故发生后,公司总经理李先生立即决定将储物室作为临时仓库使用。李先生的这种决策更加倾向于()
姜黄入药部位为
异烟肼对生长旺盛的活动期结核杆菌有强大的杀灭作用,是治疗活动性肺结核的首选药物。()
英国两艘来中国运送货物的货轮在大连港相撞,双方就损害赔偿数额未达成一致,于是向我国大连海事法院提起诉讼,则我国法院在审理该争议时()
甲公司发生的下列非关联方交换中,属于非货币性资产交换的有()。
根据我国《民法总则》的规定,()以上,可以独立实施民事法律行为,为完全民事行为能力人。
CRM能降低销售成本,原因是减少了销售人员。
教育理念
冷战
About10yearsagoImetanadvertisingexecutiveinNewYorkwhoexplainedthedifficultyofadvertisinganewbrandofdeodora
最新回复
(
0
)