首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X1与X2相互独立且分别服从参数为λ1,λ2的泊松分布,P{X1+X2>0}=1—e-1,则E(X1+X2)2=________.
已知随机变量X1与X2相互独立且分别服从参数为λ1,λ2的泊松分布,P{X1+X2>0}=1—e-1,则E(X1+X2)2=________.
admin
2018-11-20
42
问题
已知随机变量X
1
与X
2
相互独立且分别服从参数为λ
1
,λ
2
的泊松分布,P{X
1
+X
2
>0}=1—e
-1
,则E(X
1
+X
2
)
2
=________.
选项
答案
2
解析
已知X
i
~P(λ
i
)且相互独立,所以EX
i
=DX
i
=λ
i
,i=1,2.
E(X
1
+X
2
)
2
=E(X
1
2
+2X
1
X
2
+X
2
2
)
=EX
1
2
+2EX
1
EX
2
+EX
2
2
=λ
1
+λ
1
2
+2λ
1
λ
2
+λ
2
+λ
2
2
=λ
1
+λ
2
+(λ
1
+λ
2
)
2
.
为求得最终结果我们需要由已知条件求得λ
1
+λ
2
.因为
P{X
1
+X
2
>0}=1—P{X
1
+X
2
≤0}=1一P{X
1
+X
2
=0}
=1—P{X
1
=0,X
2
=0}=1一P{X
1
=0}P{X
2
=0}
所以λ
1
+λ
2
=1,故E(X
1
+X
2
)
2
=1+1=2.
转载请注明原文地址:https://kaotiyun.com/show/g5W4777K
0
考研数学三
相关试题推荐
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A2|=________.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设相似于对角阵,求:A100.
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设A,B满足A*BA=2BA一8E,且A=,求B.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在c∈(a,b),使得f(f)=0;
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA一1α≠b.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:第三次才取得次品;
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
随机试题
行车中当驾驶人意识到机动车爆胎时,应在控制住方向的情况下采取紧急制动,迫使机动车迅速停住。
下列关于Internet网中主机、IP地址和域名的叙述,错误的是________。
β受体阻滞剂治疗心绞痛的机制包括
下列主要用于表面麻醉的药是
下列何项是青春期开始的重要标志( )
张三、李四、王五、赵六、周七五人为研究生同学,2010年7月份研究生毕业时,五人商议欲创立一家经营法律类图书的英杰有限责任公司。五人订立了设立公司的协议,约定张三以2010年6月份依据遗嘱继承的其祖父所留给他的临街的一处二层商业房作为出资;李四以货币10万
甲企业向乙银行申请贷款,约定还款日期为2020年12月30日。丙企业为该债务提供了保证担保,但未约定保证方式和保证期间。后甲企业申请展期,与乙银行就还款期限作了变更,还款期限延至2021年12月30日,但未征得丙企业的书面同意。展期到期,甲企业无力还款,乙
以下旅游资源是按功能分类的有()
____________。中国人在太空迈出的每一步,都是科技创新的坚实足印。没有创新驱动,就不会有航天工程的突飞猛进;没有创新驱动,就不会有空间技术、空间应用和空间科学的蓬勃发展。尊重科学、追求卓越,这是中国航天精神,更是大众创业、万众创新背景下转型升级的
五代花鸟画家黄筌和徐熙分别创造了不同的绘画风格,人称“黄家富贵,_______。”
最新回复
(
0
)