(1996年)设f(χ)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f′(a).f′(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f〞(η)=0.

admin2016-05-30  39

问题 (1996年)设f(χ)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f′(a).f′(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f〞(η)=0.

选项

答案先用反证法证明:[*]ξ∈(a,b),使f(ξ)=0.否则由f(χ)的连续性可知,在区间(a,b)内恒有f(χ)>0或f(χ)<0.不妨设f(χ)>0,则 [*] 从而f′(a)f′(b)≤0.这与已知条件矛盾,则在(a,b)内至少存在ξ,使f(ξ)=0. 再由f(a)=f(ξ)=f(b)及罗尔定理知.存在η1∈(a,ξ)和η2∈(ξ,b)使 f′(η1)=f′(η2)=0 又在[η1,η2]上对f′(χ)应用罗尔定理知,存在η∈(η1,η2),使f〞(η)=0

解析
转载请注明原文地址:https://kaotiyun.com/show/lst4777K
0

最新回复(0)