首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: 0≤∫axg(t)dt≤x一a,x∈[a,b];
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: 0≤∫axg(t)dt≤x一a,x∈[a,b];
admin
2019-04-17
49
问题
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,
0≤g(x)≤1.证明:
0≤∫
a
x
g(t)dt≤x一a,x∈[a,b];
选项
答案
可用积分的估值定理、中值定理、比较定理等法证(I),可用函数的单调性证明(Ⅱ)成立. 证(I)证一 由定积分的估值定理证之. 因g(x)在[a,b]上连续,则在[a,b]上必可积,且 0≤g(x)≤1.由估值定理知,当x∈[a,b]时,必有(x-a)·0≤∫
a
x
g(t)dt≤(x一a)·1,即0≤∫
a
x
g(t)df≤(x一a). 证二 由比较定理证之,因0≤g(x)≤1,则∫
a
x
0dt≤∫
a
x
g(t)dt≤∫
a
x
dt,即0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]. 证三 由积分中值定理证之.由该定理得到∫
a
x
g(t)dt=g(ξ)(x一a),ξ∈[a,x],因当x∈[a,b]时,有0≤g(x)≤1,故0≤g(ξ)≤1,从而 0=(x—a)·0≤∫
a
x
g(t)dt≤(x—a)·1=x一a.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJV4777K
0
考研数学二
相关试题推荐
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
设f(lnx)=求∫f(x)dx.
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3).(Ⅲ)f(x)=,其中a>0(x2).
设闭区域D:x2+y2≤v,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
设an=,证明:{an}收敛,并求
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
(2012年)曲线y=渐近线的条数为【】
(2002年试题,九)设0
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
随机试题
下列句子的语法结构与例句相同的是()。例句:中共中央总书记、国家主席、中央军委主席习近平在视察国防科学技术大学时指出,要紧紧围绕强军目标来进行思想政治建设,使思想政治建设成为实现这一目标的强大推力和助力。
压疮淤血红润期的主要护理措施是( )。【历年考试真题】
某河段的水体环境容量是指()。
业主方的项目管理服务于业主的利益,其项目管理的投资目标是指项目的( )。
对企事业单位、社会团体以及其他组织转让旧房作为公租房房源,且增值额未超过扣除项目金额()的,免征土地增值税。
甲公司是一家机械加工企业,产品生产需要某种材料,年需求量为720吨(一年按360天计算)。该公司材料采购实行供应商招标制度,年初选定供应商并确定材料价格,供应商根据甲公司指令发货,运输费由甲公司承担。目前有两个供应商方案可供选择,相关资料如下。方案一:选
根据下列资料。回答下列问题。2015年,飞机日利用率最高和客座率最高的月份之间相隔()个月。
签名效应是指当人们在纸上写上自己名字时,大脑中的自我意识会加强,此时看到喜欢的东西,更容易把物品和自己联系起来,产生“这个东西真适合我”等想法,从而激发购买欲望。根据上述定义,下列现象可用签名效应解释的是:
乘客使用手机及便携式电子设备会通过电磁波谱频繁传输信号,机场的无线电话和导航网络等也会使用电磁波谱,但电信委员会已根据不同用途把电磁波谱分成了几大块。因此,用手机打电话不会对专供飞机通信系统或全球定位系统使用的波段造成干扰。尽管如此,各大航空公司仍然规定,
Whatmightdrivingonanautomatedhighwaybelike?TheanswerdependsonwhatkindofsystemisultimatelyadoptedTwodistinct
最新回复
(
0
)