首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: 0≤∫axg(t)dt≤x一a,x∈[a,b];
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加, 0≤g(x)≤1.证明: 0≤∫axg(t)dt≤x一a,x∈[a,b];
admin
2019-04-17
89
问题
[2014年] 设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,
0≤g(x)≤1.证明:
0≤∫
a
x
g(t)dt≤x一a,x∈[a,b];
选项
答案
可用积分的估值定理、中值定理、比较定理等法证(I),可用函数的单调性证明(Ⅱ)成立. 证(I)证一 由定积分的估值定理证之. 因g(x)在[a,b]上连续,则在[a,b]上必可积,且 0≤g(x)≤1.由估值定理知,当x∈[a,b]时,必有(x-a)·0≤∫
a
x
g(t)dt≤(x一a)·1,即0≤∫
a
x
g(t)df≤(x一a). 证二 由比较定理证之,因0≤g(x)≤1,则∫
a
x
0dt≤∫
a
x
g(t)dt≤∫
a
x
dt,即0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]. 证三 由积分中值定理证之.由该定理得到∫
a
x
g(t)dt=g(ξ)(x一a),ξ∈[a,x],因当x∈[a,b]时,有0≤g(x)≤1,故0≤g(ξ)≤1,从而 0=(x—a)·0≤∫
a
x
g(t)dt≤(x—a)·1=x一a.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJV4777K
0
考研数学二
相关试题推荐
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
求微分方程y"+2y’-3y=e-3x的通解.
设an=,证明:{an}收敛,并求
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
求微分方程y"+4y’+4y=e-2x的通解.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(2004年试题,一)设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=__________.
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
随机试题
A.错语B.独语C.郑声D.狂言E.谵语神志不清、语无伦次、声高有力,该病况称为
下列哪项不属于机械性损伤()
下图为不透水层上的排水廊道,已知:垂直于纸面方向长100m,廊道水深h=2m,含水层中水深H=4m,土壤的渗透系数k=0.001cm/s,廊道的影响半径R=200m,则廊道的排水流量Q为()。
根据《反价格垄断规定》的规定,经营者对交易相对人实行强制交易的正当理由中不包括()。
某居民企业(非金融企业)2015年12月31日归还境内关联企业一年期借款本金1000万元,另支付利息费用80万元,关联企业对该居民企业的权益性投资额为400万元,该居民企业的实际税负高于境内关联企业,同期同类银行贷款年利率为6%。该居民企业2015年在计算
房地产的供求状况可以分为()。
“不找任何借口”是世界500强企业关于优秀员工的12条核心标准之一。其意思包括()
《北京人在纽约》中有一句经典的台词“如果你爱他,就把他送到纽约,那里是天堂:如果你不爱他,那就把他送到纽约,那里是地狱。”这句话体现()。
有关外国市场进入模式的问题人们提到外国市场进入,会提到以下类型的基本模式:出口、许可、特许经营、通过直接投资建立合资企业或全资企业、管理合同和国际工程承包等,这些并不可以完全相互替代。请回答以下相关问题。[对外经济贸易大学2011国际商务硕士]出
将代数式转换成程序设计中的表达式为【】。
最新回复
(
0
)