首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
admin
2016-05-09
52
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n.对任一n唯向量b,因为a
1
,a
2
…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关. 综上所述r(a
1
,a
2
,…,a
n
,b)=n. 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示. 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
3
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n. 综上,r(a
1
,a
2
,…,a
n
)=n.所以a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/gMw4777K
0
考研数学一
相关试题推荐
求极限.
设y=y(x)有一阶连续导数,y(0)=1,且满足求y=y(x);
微分方程ey=x的通解为________
已知曲线L的极坐标方程为r=1+cosθ(0≤θ≤π/2)求曲线L在θ=π/4对应点处的切线T的直角坐标方程
设函数y=y(x)满足x=dt,x≥0若y=y(x),y=0及x=1所围图形为D,求D绕Y轴旋转一周所得旋转体的体积V
求微分方程y’+ycosx=(1nx)e-sinx的通解.
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
求幂级数的和函数.
设a为常数,级数().
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
随机试题
中国魏晋时期的______哲学流派对这个时期的诗歌、书法作品创作中深层的意蕴具有重要影响。()
A.含挥发油,油中主成分为桂皮酸B.含挥发油,油中主成分是α、β-桉油醇C.七叶树素、七叶树苷D.东莨菪碱、莨菪碱E.黄酮类化合物、绿原酸、异绿原酸
A.对工作极端负责,对技术精益求精B.树立正确的经营道德观C.为病患者提供质量保证的药品和安全、有效、经济、合理的药学服务D.互相关心,维护集体荣誉E.开展用药调查及药品利用评价药品流通领域的道德责任之一是()
案情:2009年1月,甲、乙、丙、丁、戊共同投资设立鑫荣新材料有限公司(以下简称鑫荣公司),从事保温隔热高新建材的研发与生产。该公司注册资本2000万元,各股东认缴的出资比例分别为44%、32%、13%、6%、5%。其中,丙将其对大都房地产开发有限公司所持
美国对失职或在执业中出现问题的房地产经纪人采取的主要措施有()。
当量子能量达到()eV以上时,对物体有电离作用,能导致机体的严重损伤,这类辐射称为电离辐射。
下列选项中,不属于全国人大常委会的预算管理职权的是()。
2019年2月,农业农村部等七部门联合印发《国家质量兴农战略规划(2018—2022年)》。下列关于实施质量兴农战略的说法,正确的是:
“杵臼之交”多用来指不计身份而结交的朋友。这里的“杵臼”在古代是用来做什么的?()
PeoplewhogrewupinAmericaandWesternEuropehavebecomeusedtotheideathattheWestdominatestheworldeconomy.Infact
最新回复
(
0
)