首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
admin
2016-05-09
59
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n.对任一n唯向量b,因为a
1
,a
2
…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关. 综上所述r(a
1
,a
2
,…,a
n
,b)=n. 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示. 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
3
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n. 综上,r(a
1
,a
2
,…,a
n
)=n.所以a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/gMw4777K
0
考研数学一
相关试题推荐
设f(x)在x=0的某邻域内二阶可导,且=e3,求f(0),f’(0),f”(0),.
求极限.
已知f(x)有连续导数,且=2,则f(x)的一阶麦克劳林展开式为________
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B若AX=B,求X
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
在x=0的某邻域内用关于x的二次多项式近似表示secx使其误差是比sinx2高阶的无穷小(x→0),则该二次多项式为()
设飞机以匀速ν(ν为常数)沿垂直于x轴的方向向上飞行,飞机在(a,0)(a>0)处被发现,随即从原点(0,0)处发射导弹,导弹的速度为2ν,方向始终指向飞机,如图所示求导弹飞行轨迹y=y(x)的表达式;
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)求
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
函数z=x2-y2在点A(1,1)处沿与x轴正向组成角α=60°的方向l的方向导数为().
随机试题
性激素属于
一般地表水处理厂采用的常规处理流程为()。
在全国银行间债券市场进行买断式回购,交易双方可以协商确定( )。
齐胜夫妻二人因为感情不和提出离婚,那么二人在诉讼离婚时必经的庭审程序是()。
关于臀中肌、臀小肌注射说法正确的是()。
股份制是现代企业的一种资本组织形式,但“不能笼统地说股份制是公有还是私有”,对这句话的正确理解是()。
阅读下文,回答下列几题:由于人脑的信息处理能力已经达到极限,因此人类永远不会变得比今天聪明得多。英国东部伊普斯威奇市的英国电信公司实验室的科学家称,由于人脑中神经元的大小和数量与为它们提供营养的血管之问存在微妙的平衡关系,因此根本的改善是不可能的
PopstarstodayenjoyastyleoflivingwhichwasoncetheprerogativeonlyRoyalty.Wherevertheygo,peopleturnoutinth
DoyouthinktheinformationfromsocialmediasuchasTwitterandFacebookisreliable?
Hisgreatest______ishisutterlynaturalandprofoundlygoodmusicalinstinct.
最新回复
(
0
)