首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
admin
2018-01-23
60
问题
设函数f(x)可导且0≤f’(x)≤
(k>0),对任意的x
n
,作x
n+1
=f(x
n
)(n=0,1,2,…),证明:
x
n
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(ξ
n
)(x
n
~x
n-1
),因为f’(x)≥0,所以x
n+1
-x
n
与x
n
-x
n-1
同号,故{x
n
}单调. |x
n
|=|f(x
n-1
)|=|f(x
n
)+∫
x
n
x
n-1
f’(x)dx| ≤|f(x
n
)|+|∫
x
n
x
n-1
f’(x)dx|≤|f(x
n
)|+∫
-∞
+∞
[*]dx=|f(x
n
)|+πk, 即{x
n
}有界,于是[*]x
n
存在, 根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞,得 [*],原命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/gNX4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
已知产品某项指标X服从拉普拉斯分布,其密度为f(x)=e-|x-μ|,一∞<x<+∞,其中μ为未知参数.现从该产品中随机抽取3个,测得其该项指标值为1028,968,1007.(1)试用矩估计法求μ的估计;(2)试用最大似然估计法求μ的估计.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
已知商品的需求量D和供给量S都是价格p的函数:D=D(p)=,S=S(p)=bp,其中a>0,b>0为常数;价格P是时间t的函数,且满足方程=k[D(p)一S(p)](k为正常数).①假设当t=0时,价格为1.试求:(1)需求量等于供
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α,证明:(Ⅰ)矩阵B=[α,Aα,A4α]可逆;(Ⅱ)BTB为正定矩阵.
设f(x)是(一∞,+∞)内以T为周期的连续奇函数,则下列函数中不是周期函数的是().
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
线性方程组有公共的非零解,求a,b的值和全部公共解。
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
随机试题
WehadbeeninAthensfornotmorethantwodaysthatitbecameobviousthatweneededaguide.
在TΨCGImUUA的RNA链中,含有的稀有核苷酸数目为()。
债券的付息方式有()。
校验动稳定时,电动力一般用()。
柜面业务操作风险的控制措施不包括()。
委托其他纳税人代销货物的,其确定销售收入实现的时间可以为()。
已知消费者的收入水平为200元,甲商品的价格为10元,乙商品的价格为5元。假定他打算购买6单位甲商品和14单位乙商品,且此时甲商品和乙商品的边际效用分别为40和16,如果该人想获得最大效用,他应该( )。
短期借款的利息既可计入“财务费用”,又可计入“管理费用”。()
一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了()果树。
Ofthe400cadetsinagraduatingclass,30percentwerewomenand,ofthese,1/5becameinstructors.Ifthenumberofmenwhob
最新回复
(
0
)