首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=. (1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=. (1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
admin
2016-04-11
62
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
.
(1)记x=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
—1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1) f(X)=(x
1
,x
2
,…,x
n
)[*] 因秩(A)=n,故A可逆,且A
-1
=[*]A
*
,从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/gVw4777K
0
考研数学一
相关试题推荐
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求可逆矩阵P,使得PTAP=B
利用变量替换u=x,v=y/x,可将方程化成新方程为().
已知y”+(x+3e2y)(y’)3=0(y’≠0),当把y视为自变量,而把x视为因变量时:求方程化成的新形式;
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
随机试题
下面的结构示意图显示的是干式报警阀未开启(准工作)状态。()
A.PR间期延长B.P波与QRS波群无关C.PR间期逐渐延长,继之QRS波群脱落,呈周期性D.PR间期固定,有时QRS波群脱落三度房室阻滞
最可能的诊断是治疗原则不正确的是
A.桂枝茯苓丸B.血府逐瘀汤C.失笑散D.膈下逐瘀汤E.桃红四物汤治疗子宫肌瘤气滞血瘀证,应首选
依法必须招标的国家重大建设项目,必须在报送项目的()报告中增加有关招标内容。
根据国内生产总值的收入法计算公式,企业增加值的构成项目不包括()。
甲公司于20×7年1月1日将已到期并按公允价值进行后续计量的出租建筑物转为自用。该项建筑物的原价为2000万元,持有期间的公允价值累计增加为400万元,转换日的公允价值为2500万元。在不考虑相关税费的情况下,甲公司因该项转换而影响当期损益的金额为(
案例:【胶体的课堂导入】教师上课用PPT展示图片,万道金光射到森林中的景象(丁达尔现象),三角洲的形成(胶体的凝聚),黄山晨雾美景,工厂上方浓烟(气溶胶),烟水晶,有色玻璃(固溶胶)等。教师提问:“同学们,你们知道这些现象是什么吗?这些物质是怎么形成的吗
下列加点字的释义全都正确的是:
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)