首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 α1=,α2+α3=,α4=,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公
设(Ⅰ)α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 α1=,α2+α3=,α4=,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公
admin
2018-05-22
84
问题
设(Ⅰ)
α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,其中
α
1
=
,α
2
+α
3
=
,α
4
=
,r(B)=2.
(1)求方程组(Ⅰ)的基础解系;
(2)求方程组(Ⅱ)BX=0的基础解系;
(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
选项
答案
(1)方程组(Ⅰ)的基础解系为ξ
1
=[*],ξ
2
=[*] (2)因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量, α
4
-α
1
=[*],α
2
+α
3
-2α
1
=[*]为方程组(Ⅱ)的基础解系; (3)方程组(Ⅰ)的通解为k
1
ξ
1
+k
2
ξ
2
=[*],方程组(Ⅱ)的通解为[*] 令[*]-k
1
=k
2
,取k
2
=k
1
,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,1,1,1)
T
(其中k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/gck4777K
0
考研数学二
相关试题推荐
(2008年试题,一)设则在实数域上与A合同的矩阵为()
(2005年试题,一)微分方程xy’+2y=xlnx满足的解为__________.
(2009年试题,一)设函数y=f(x)在区间[一1,3]上的图形如图1—3—4所示,则函数的图形为().
(2006年试题,二)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是().
(2010年试题,14)设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量.(2)求矩阵B
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程yxey-1=1所确定,设z=f(lny—sinx),求。
处的值为_______.
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
随机试题
A、鞍区麻醉B、骶管阻滞C、区域阻滞D、臂丛神经阻滞E、神经阻滞麻醉属于蛛网膜下腔麻醉的是()
在已知序列的情况下获得目的DNA最常用的是
聚对苯二甲酸乙二醇酯树脂的主要卫生问题是
急性肾盂肾炎常见的致病微生物是
下列哪一种情况应当数罪并罚?
下列哪一因素不能决定社会危害性的轻重与程度?()
市场预测中供需预测应考虑的因素有()。
数量金额式账簿的收入、发出和结存三大栏内,都分设( )三个小栏。
某商贸企业2013年度产品销售收入6000万元。当年发生管理费用300万元。其中业务招待费80万元。该企业2013年度所得税前可以扣除的管理费用为()万元。
Yetbeyondthattragicpicture,thereisarevolutionatworkinworldliteratureandart.
最新回复
(
0
)