首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2014-01-26
102
问题
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知,B的每一列均为Ax=0的解,且r(A)+r(B)≤3. (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3=r(A)=2,矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0的通解为:[*],k
1
,k
2
为任意常数. (2)若k=9,则r(B)=1,从而1≤r(A)≤2. ①若r(A)=2,则Ax=0的通解为[*],k
1
为任意常数. ②若r(A)=1,则Ax=0的同解方程组为ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为[*],k
1
,k
2
为任意常数.
解析
[分析] AB=0,相当于已知B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,这又转化为确定系数矩阵A的秩.
[评注] AB=0这类已知条件是反复出现的,应该明确其引申含义:
1.B的每一列均为Ax=0的解;
2.r(A)+r(B)≤n.
转载请注明原文地址:https://kaotiyun.com/show/lm34777K
0
考研数学二
相关试题推荐
(04年)函数f(χ)=在下列哪个区间内有界:【】
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
[2016年]设函数f(x)连续,且满足求f(x).
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
男,60岁,间歇上腹部痛4年,1个月前出现进食后饱胀、嗳气、不反酸,食欲减退,体重减低。实验室检查:血红蛋白90g/L。最有可能的诊断为
A蒸发B干燥C减压干燥D常压干燥E浸出用加热的方法使溶液中部分溶剂气化并除去,从而提高溶液的浓度的工艺
气滞类证不包括
如果纳米新型材料公司与商某委托开发完成了发明创造,则在双方没有约定的情况下申请专利的权利应属于()。在商某与纳米新型材料公司的委托研究开发中虽未取得最终成功,但也取得了一些成果,而对这些成果的使用权和转让权,双方没有约定,则()。
对于氟利昂制冷系统,当()时,采用双级压缩。
建设单位应当自工程验收合格后15日内,依据规定,向()备案。
下列关于三相异步交流电动机的叙述中,正确的有()。
进学解韩愈国子先生晨入太学,招诸生立馆下,诲之曰:“业精于勤,荒于嬉;行成于思,毁于随。方今圣贤相逢,治具毕张,拔去凶邪,登崇唆良。占小善者率以录,名一艺者无不庸。爬罗剔挟,刮
Properarrangementofclassroomspaceisimportanttoencouraginginteraction.Today’scorporationshirehumanengineering
PASSAGEFOURWhatdoesthepassagemainlytellus?
最新回复
(
0
)