首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2014-01-26
122
问题
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知,B的每一列均为Ax=0的解,且r(A)+r(B)≤3. (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3=r(A)=2,矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0的通解为:[*],k
1
,k
2
为任意常数. (2)若k=9,则r(B)=1,从而1≤r(A)≤2. ①若r(A)=2,则Ax=0的通解为[*],k
1
为任意常数. ②若r(A)=1,则Ax=0的同解方程组为ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为[*],k
1
,k
2
为任意常数.
解析
[分析] AB=0,相当于已知B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,这又转化为确定系数矩阵A的秩.
[评注] AB=0这类已知条件是反复出现的,应该明确其引申含义:
1.B的每一列均为Ax=0的解;
2.r(A)+r(B)≤n.
转载请注明原文地址:https://kaotiyun.com/show/lm34777K
0
考研数学二
相关试题推荐
(12年)设随机变量X与Y相互独立,且都服从参数为1的指数分布.记U=max{X,Y),V=min{X,Y}.(Ⅰ)求V的概率密度fV(v);(Ⅱ)求E(U+V).
假设D是矩阵A的r阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
(16年)设函数f(χ)连续,且满足∫0χf(χ-t)dt=∫0χ(χ-t)f(t)dt+e-χ-1,求f(χ).
(91年)某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(96年)设矩阵A=(1)已知A的一个特征值为3,试求y;(2)求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设线性方程组(1)与方程x1+2x2+x3=a一1(2)有公共解,求a的值及所有公共解。
随机试题
依据我国《国徽法》的规定,可以悬挂国徽的国家机关是【】
新生儿生理性黄疸的原因与以下哪项无关
“比较并推荐先进、可靠、适用的项目建设方案”是()的主要任务之一。
2008年1月1日,乙建筑公司与客户签订一项固定造价建造合同,承建一幢办公楼,预计2009年6月30日完工;合同总金额为16000万元,预计合同总成本为14000万元。2009年4月28日,工程提前完工并符合合同要求,客户同意支付奖励款200万元。
下列选项中属于能力特质的有()。
(2017年)民间非营利组织应将预收的以后年度会费确认为负债。()
WSXEDCCFDRXVE
《中华人民共和国商业银行法》要求我国商业银行在一定期限内实现《巴塞尔协议》规定的“资本充足率不得低于8%”的目标。你认为我国四大国有商业银行应该采取何种策略措施才能实现这一目标?为什么?
A、条件(1)充分,但条件(2)不充分B、条件(2)充分,但条件(1)不充分C、条件(1)和(2)单独都不充分。但条件(1)和条件(2)联合起来充分D、条件(1)充分,条件(2)也充分E、条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
Intheyearsfollowingthe1977DietaryGoalsandthe1982NationalAcademyofSciencesreportondietandcancer,thefoodindu
最新回复
(
0
)