首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2014-01-26
110
问题
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知,B的每一列均为Ax=0的解,且r(A)+r(B)≤3. (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3=r(A)=2,矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0的通解为:[*],k
1
,k
2
为任意常数. (2)若k=9,则r(B)=1,从而1≤r(A)≤2. ①若r(A)=2,则Ax=0的通解为[*],k
1
为任意常数. ②若r(A)=1,则Ax=0的同解方程组为ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为[*],k
1
,k
2
为任意常数.
解析
[分析] AB=0,相当于已知B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,这又转化为确定系数矩阵A的秩.
[评注] AB=0这类已知条件是反复出现的,应该明确其引申含义:
1.B的每一列均为Ax=0的解;
2.r(A)+r(B)≤n.
转载请注明原文地址:https://kaotiyun.com/show/lm34777K
0
考研数学二
相关试题推荐
[2009年]设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(99年)设生产某种产品必须投入两种要素,χ1和χ2分别为两要素的投入量,Q为产出量;若生产函数为Q=2χ1αχ2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设A=。(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
随机试题
依照《出版管理条例》和重大选题备案有关规定,下列书稿出版前需报备案的有()
关于黄体囊肿的描述,下列哪一项是错误的
患儿,男,7岁。右髋痛伴有跛行3天,1周前有上感病史。查体:体温37.5℃,患髋屈曲畸形,后伸受限伴有极度疼痛,白细胞及血沉检查均正常,关节液检查无异常。最可能的诊断是
A.对乙酰氨基酚B.布洛芬C.曲马多D.芬太尼E.吲哚美辛属于中枢性镇痛药的是
以下不是一般合同的内容的是()。①当事人的名称或姓名和住所;②标的;③数量;④质量;⑤产量;⑥公证人;⑦价款或酬金;⑧履行期限、地点和方式;⑨违约责任;⑩争议解决方法
某投资者打算投资基金份额,但担心基金投资仍然具有较高的风险。实际上证券投资基金通过发行基金单位集中的资金,可以进行风险分散的投资,其中最大程度分散了风险的基金是( )。
一般来说,出口采用到岸价格统计,进口则采用离岸价格统计。()
商业银行信用风险经济资本主要用于规避银行的()。
【2015年重庆綦江.多选】《中小学教师职业道德规范》中,对“教书育人”的具体要求是()。
甲上晚自习时拾得一个单反相机,后相机被乙借走。乙看到悬赏200元的寻物启事,未经甲同意将相机还给了失主。下列选项中,正确的是()(2015年一专一第31题)
最新回复
(
0
)