首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,α3,α4满足3α1+2α2+α3-2α4=0,若对任意的n维向量β,向量组l1β+α1,l2β+α2,l3β+α3,l4β+α4都是线性相关的,则l1,l2,l3,l4应满足的关系为__________。
设n维向量组α1,α2,α3,α4满足3α1+2α2+α3-2α4=0,若对任意的n维向量β,向量组l1β+α1,l2β+α2,l3β+α3,l4β+α4都是线性相关的,则l1,l2,l3,l4应满足的关系为__________。
admin
2019-01-25
79
问题
设n维向量组α
1
,α
2
,α
3
,α
4
满足3α
1
+2α
2
+α
3
-2α
4
=0,若对任意的n维向量β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
都是线性相关的,则l
1
,l
2
,l
3
,l
4
应满足的关系为__________。
选项
答案
3l
1
+2l
2
+l
3
-2l
4
=0
解析
本题考查向量组的线性相关性。写出向量组线性相关的定义表达式,根据已知条件,如果对任意的n维向量β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
+α
3
,l
4
β+α
4
都是线性相关的,则β前面的系数为0。
向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
线性相关,则存在不全为零的数k
1
,k
2
,k
3
,k
4
,使得
k
1
(l
1
β+α
1
)+k
2
(l
2
β+α
2
)+k
3
(l
3
β+α
3
)+k
4
(l
4
β+α
4
)=0,
即 (k
1
l
1
+k
2
l
2
+k
3
l
3
+k
4
l
4
)β+k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,
已知α
1
,α
2
,α
3
,α
4
满足3α
1
+2α
2
+α
3
-2α
4
=O,因此当3l
1
+2l
2
+l
3
-2l
4
=0时,对任意的β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
都是线性相关的,故l
1
,l
2
,l
3
,l
4
应满足的关系为3l
1
+2l
2
+l
3
-2l
4
=0。
转载请注明原文地址:https://kaotiyun.com/show/ghP4777K
0
考研数学三
相关试题推荐
已知级数.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
交换极坐标系下的二重积分I=∫—π/2π/2dθ∫0acosθf(r,θ)dr的次序,其中f(r,θ)为连续函数.
已知函数y=e2x+(x+1)ex是线性微分方程y"+ay’+by=cex的一个解,试确定常数a、b、c的值及该微分方程的通解.
已知A=相似,求a,b的值,并求正交矩阵P使p—1AP=B.
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
当|x|<1时,级数的和函数是()
若级数发散,则()
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
随机试题
When27yearsofage,Burnsfirstattractedliteraryattention,andinthesamemomentsprangtothefirstplaceinScottishlet
Even’s综合征
对津液输布代谢的影响最为重要的腑是
卵泡基本结构是
A.龙胆泻肝汤B.柴胡疏肝散C.旋覆花汤D.一贯煎E.茵陈蒿汤治疗胁痛瘀血停着证,应首选()
在灌注桩的清孔施工中,适用于各种钻孔方法的灌注桩,清孔较为彻底的方法是()。
【背景资料】某新建工程,建筑面积15000m2;地下两层,地上五层,钢筋混凝土框架结构采用800mm厚钢筋混凝土筏板基础,建筑总高20m。建设单位与某施工总承包单位签订了总承包合同。施工总承包单位将建设工程的基坑工程分包给了建设单位指定的专业分包
下列指标中,()通过净利息收入与生息资产比值,反映目标区域信贷资产盈利能力。
必须长期坚持对严重危害社会治安的犯罪分子采取依法()惩处的政策,必要时在全国范围或较大区域内开展对严重刑事犯罪活动集中统一的打击行动。
在科技界也同样存在着性别歧视,《科技时报》报道,在过去的20年间,女性从事科技工作的人数虽然有所增长,但是在各类科技奖项的评选中,男女获奖比例仅为12:1。以下哪项对上述论断提出最有力的质疑?
最新回复
(
0
)