首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,α3,α4满足3α1+2α2+α3-2α4=0,若对任意的n维向量β,向量组l1β+α1,l2β+α2,l3β+α3,l4β+α4都是线性相关的,则l1,l2,l3,l4应满足的关系为__________。
设n维向量组α1,α2,α3,α4满足3α1+2α2+α3-2α4=0,若对任意的n维向量β,向量组l1β+α1,l2β+α2,l3β+α3,l4β+α4都是线性相关的,则l1,l2,l3,l4应满足的关系为__________。
admin
2019-01-25
80
问题
设n维向量组α
1
,α
2
,α
3
,α
4
满足3α
1
+2α
2
+α
3
-2α
4
=0,若对任意的n维向量β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
都是线性相关的,则l
1
,l
2
,l
3
,l
4
应满足的关系为__________。
选项
答案
3l
1
+2l
2
+l
3
-2l
4
=0
解析
本题考查向量组的线性相关性。写出向量组线性相关的定义表达式,根据已知条件,如果对任意的n维向量β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
+α
3
,l
4
β+α
4
都是线性相关的,则β前面的系数为0。
向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
线性相关,则存在不全为零的数k
1
,k
2
,k
3
,k
4
,使得
k
1
(l
1
β+α
1
)+k
2
(l
2
β+α
2
)+k
3
(l
3
β+α
3
)+k
4
(l
4
β+α
4
)=0,
即 (k
1
l
1
+k
2
l
2
+k
3
l
3
+k
4
l
4
)β+k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,
已知α
1
,α
2
,α
3
,α
4
满足3α
1
+2α
2
+α
3
-2α
4
=O,因此当3l
1
+2l
2
+l
3
-2l
4
=0时,对任意的β,向量组l
1
β+α
1
,l
2
β+α
2
,l
3
β+α
3
,l
4
β+α
4
都是线性相关的,故l
1
,l
2
,l
3
,l
4
应满足的关系为3l
1
+2l
2
+l
3
-2l
4
=0。
转载请注明原文地址:https://kaotiyun.com/show/ghP4777K
0
考研数学三
相关试题推荐
求解微分方程(x—ycos=0.
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设A是n阶方阵,证明:AnX=0和An+1X=0是同解方程组.
计算二重积分I=||x+y|一2|dσ,其中积分区域为D={(x,y)|0≤x≤2,一2≤y≤2}.
求二重积分I=xydxdy,其中积分区域D={(x,y)|x2+y2≥1,x2+y2—2x≤0,y≥0}.
设随机变量X的概率密度为f(x)=求方差D(X)和D(X2).
设常数λ>0且级数收敛,则级数
设X1,X2,…,X8和Y1,Y2,…,Y10分别是来自正态总体N(-1,4)和N(2,5)的简单随机样本,且相互独立,S12,S22分别为这两个样本的方差,则服从F(7,9)分布的统计量是()
若事件A和B同时出现的概率P(AB)=0,则()
随机试题
油斑的含油面积25%~50%,一般多为粉砂质泥岩。在砂质富集的斑块、条带处含油,含油不饱满。()
有利于早期诊断麻疹的体征是
电缆敷设及电缆头制安预算定额按铜芯铝芯综合考虑,无论铜芯、铝芯电缆均不作调整。
某工程桩基采用φ600的C25旋挖钻孔灌注桩120根,成孔长度为30m(其中入岩1.2m)。设计有效桩长为26m,桩孔回填土,则其灌注的工程量为()。
水喷雾系统的水雾滴平均直径随喷头工作压力变化而变化,其太大或太小都会影响灭火效果,一般水雾的粒径应不小于()。
公司信贷客户市场细分的方法中,按照产业生命周期的不同,可划分为新兴产业和夕阳产业。()
吴越国佛教特别盛行,曾修建了许多寺庙和佛塔,仅西湖就兴建了()等300多个寺院和100多座佛塔,有“佛国”之称。
Tobeginwith,wearewitnessinga(31)explosionof"solos"—peoplewholive(32),outsideafamilyaltogether.Between1970and
Themassmediaisabigpartofourculture,yetitcanalsobeahelper,adviserandteachertoouryounggeneration.Themass
UniversitiesBranchOutA)Asneverbeforeintheirlonghistory,universitieshavebecomeinstrumentsofnationalcompetitionas
最新回复
(
0
)