首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组A:a1=,问α,β为何值时: 向量易能由向量组A线性表示,且表示式唯一;
设有向量组A:a1=,问α,β为何值时: 向量易能由向量组A线性表示,且表示式唯一;
admin
2016-05-31
32
问题
设有向量组A:a
1
=
,问α,β为何值时:
向量易能由向量组A线性表示,且表示式唯一;
选项
答案
矩阵A=(α
1
,α
2
,α
3
),那么方程Ax=b有解的充要条件为b可由向量组A线性表示. 当方程Ax=b的系数行列式 [*] 即当α≠-4时,方程有唯一解,从而向量b能由向量组A线性表示,且表示式唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/ghT4777K
0
考研数学三
相关试题推荐
在中共八大上,提出“三个主体,三个补充”即国家与集体经营、计划生产和国家市场是主体,一定范围内国家领导的个体经营、自由生产和自由市场作为补充这一思想的领导人是()。
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
随机试题
根据《文物保护法》,在文物保护单位的建设控制地带内进行建设工程,工程设计方案应先经相应级别的文物行政部门同意后,再报()批准。
(2007年4月)根据宪法规定,全国人大代表提出宪法修改案须__________。
良性叶状囊性肉瘤的声像图特点是
下列可引起男子乳房女性化和妇女多毛症的药是
根据《中华人民共和国招标投标法实施条例》,国务院发展改革部门依法指定的公告发布媒介是指()。
材料大意:一个公益组织对某县教育资源缺乏的地区提供了帮助。在这个组织中有项目策划组,其中有3个人,一个叫王立,在这个组织中已经工作了3年;一个叫小方,刚分配到这里,因此王立经常指导小方的工作,并且要求严格,甚至影响了小方在工作中的独立发挥;另一个人是李娜,
下列各组财产中,构成主物与从物关系的是()。(2012年单选21)
下列叙述中正确的是
Afterhavingassuredtheirreturnjourney,thewriterandhiscompanioncouldconcentrateoncollectingandfilmanimals.Decidi
Whomakestheannouncement?The______ofthecity.Whatkindofstoriesdidthespeaker’sgrandmothertellhim?Thestoriesab
最新回复
(
0
)