首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,方程组AX=β有解但不唯一。 求可逆矩阵P,使得P-1AP为对角阵。
设,方程组AX=β有解但不唯一。 求可逆矩阵P,使得P-1AP为对角阵。
admin
2021-11-25
27
问题
设
,方程组AX=β有解但不唯一。
求可逆矩阵P,使得P
-1
AP为对角阵。
选项
答案
由|λE-A|=λ(λ+3)(λ-3)=0得λ
1
=0,λ
2
=3,λ
3
=-3 由(0E-A)X=0得λ
1
=0对应的线性无关的特征向量为ξ
1
=[*] 由(3E-A)X=0得λ
2
=3对应的线性无关的特征向量为ξ
2
=[*] 由(-3E-A)X=0得λ
3
=-3对应的线性无关的特征向量为ξ
3
=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/giy4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设a1,a2,...an为n个n维线性无关的向量,A是n阶矩阵,证明:Aa1,Aa2,...Aan线性无关的充分必要条件是A可逆。
设A是m×n矩阵,且m﹥n,下列命题正确的是()。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设A是n阶正定矩阵,证明:对任意的可逆矩阵P,PTAP为正定矩阵。
椭圆绕x轴旋转一周生成的旋转曲面s的面积=______.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
随机试题
马克思和恩格斯之间的友谊可以作为哪种交往的典范()
在进行企业银行存款清查时,发现银行存款日记账余额与银行对账单余额不一致,其原因肯定是存在未达账项。
Kindnessisthemostimportant______amancanhave.
A.行痹B.痛痹C.着痹D.旭痹痹病关节剧痛、肿大、僵硬、变形,屈伸受限,其诊断是
主要用于防止间日疟复发和传播的药物是()
阅读下面的材料,按要求作文。不是每一粒种子都能长成大树,不是每一朵花都能结出果实。同样的,不是每一个人都能享有完美的人生,不是每一颗心灵都能获得宁静,也不是每一份情感都能走向永恒。缺憾,是一种常态,是理应坦然面对的存在。综合上述材料所引发的
下列语句中,不正确的一个是______。
在一个长度为n的线性表中插入一个元素,最好情况下需要移动的数据元素数目
Languagelearningbeginswithlistening.Individualchildrenvarygreatlyintheamountoflisteningtheydobeforetheystarts
Readthetextbelowaboutbusinessschools.Inmostofthelines(41-52),thereisoneextraword.Itiseithergrammatically
最新回复
(
0
)