首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A为三阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量;
[2011年] 设A为三阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量;
admin
2021-01-19
92
问题
[2011年] 设A为三阶实对称矩阵,A的秩为2,且
求A的所有特征值与特征向量;
选项
答案
利用题设条件先求出A的部分特征值及其特征向量.再利用命题2.5.4.1(2)求出全部特征值,用正交性求出其余特征向量,最后用正交对角化反求A. 因A的秩为2,A又为实对称矩阵,故A可相似对角化,且其非零特征值,即其相似对角矩阵上的非零主对角元只有两个.因而0为A的一个特征值,由题设可得 A[1,0,一1]=一[1,0,一1], A[1,0,1]=[1,0,1]. 故λ
1
=一l是A的一个特征值,且属于λ
1
=一l的特征向量为 K
2
α
2
=K
1
[1,0,一1]
T
, 其中K
1
为任意非零常数. 又λ
2
=l也是A的一个特征值,且属于λ
2
=1的所有特征向量为 K
2
α
2
=K
2
[1,0,1]
T
, 其中K
2
为任意非零常数. 设[x
1
,x
2
,x
3
]
T
为A的属于特征值0的特征向量.由于A为实对称矩阵,则 [*] 由[*]知,属于0的特征向量为K
3
α=k
3
[0,1,0]
T
, 其中K
3
为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gu84777K
0
考研数学二
相关试题推荐
如果A=(B+E),且B2=E,则A2=_________。
设A=(α1,α2,α3)是三阶矩阵,且|A|=4。若B=(α1一3α2+2α3,α2—2α3,2α2+α3),则|B|=________。
r=a(1+cosθ)在点(r,θ)=(2a,0),(a,),(0,π)处的切线方程分别为________.
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
没A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2分别是A的对应于λ1,λ2的特征向量,证明ξ1+ξ2不是A的特征向量.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值;
令[*]=t,则原式=∫arctan(1+t)d(t2)=t2arctan91+t)-∫t2/[1+(1+t)2]dt=t2arctan(1+t)-∫[1-((2t+2)/(t2+2t+2))]dt=t2arctan(1+t)-t+ln(t2+2t+2)+
随机试题
不属于甲状腺功能亢进的护理问题是
动脉导管未闭的体征是
根据《公路水运工程安全生产监督管理办法》规定,组织公路水运工程一级及以上资质施工单位的主要负责人的考核发证工作由()负责。
证券必须同时具有的两个最基本特征是()
一般情况下,企业资源的交易方式有()。
物业服务企业是依法成立、具备专门资质并具有独立企业法人地位,依据物业服务合同从事物业管理相关活动的经济实体。按照投资主体的经济成分来划分,物业服务企业可以分为()。
会议召集方在会前的责任有()
阅读以下文字,完成以下问题。1997年5月11日,美国纽约曼哈顿一幢高楼里正在进行一场被媒体称为“人机大战”的国际象棋比赛。对局的一方是1985年以来一直独霸棋坛的俄罗斯棋王卡斯帕罗夫,另一方是美国IBM公司推出的“天下第一”下棋机器——名为“深蓝
设n是正整数,则
A、They’regoingtoFranceforavacation.B、Thewomandoesn’tneedtostudynow.C、He’sconcernedaboutthewoman’sstudies.D、T
最新回复
(
0
)