首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A=,其中s,n是正整数,证明ATA是实对称阵,并就正整数s,n的情况讨论矩阵ATA的正定性; (Ⅱ)B=,BTB是否正定?说明理由.
(Ⅰ)设A=,其中s,n是正整数,证明ATA是实对称阵,并就正整数s,n的情况讨论矩阵ATA的正定性; (Ⅱ)B=,BTB是否正定?说明理由.
admin
2018-03-30
46
问题
(Ⅰ)设A=
,其中s,n是正整数,证明A
T
A是实对称阵,并就正整数s,n的情况讨论矩阵A
T
A的正定性;
(Ⅱ)B=
,B
T
B是否正定?说明理由.
选项
答案
(Ⅰ)(A
T
A)
T
=A
T
(A
T
)
T
—A
T
A,则A
T
A是实对称矩阵. 当s>n时,A的列向量组线性相关(向量个数s>向量的维数n),故Ax=0有非零解,即存在x≠0, 使得Ax=0,从而使x
T
A
T
Ax=0,故当s>n时,A
T
A不是正定矩阵. 当s=n时,范德蒙德行列式|A|≠0,A是可逆矩阵,根据矩阵正定的充分必要条件,A
T
A是正定矩阵. 当s<n时,A的列向量组线性无关(当s=n时,A的列向量组线性无关,减少向量个数仍线性无关), Ax=0只有零解,即任给x≠0,均有Ax≠0,从而有(Ax)
T
Ax=x
T
A
T
Ax>0,从而A
T
A是正定矩阵. 故当s≤n时,A
T
A是正定矩阵. (Ⅱ)因(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,则B
T
B是实对称矩阵.又|B|=10!|A|>0(其中A是(Ⅰ)中s=10,n=10的矩阵),故B
T
B是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/gwX4777K
0
考研数学三
相关试题推荐
设收敛,则下列结论正确的是
设有向量组α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,一1,5,10).则该向量组的极大无关组是【】
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).(Ⅰ)求S=S(a)的表达式;(Ⅱ)当口取何值时,面积S(a)最小?
设函数y(x)在区间[0,+∞)上有连续导数,并且满足y(x)=-1+x+2(x-t)y(t)yˊ(t)dt求y(x).
设二维随机变量(X,Y)~N(1,2;1,4;),且P{aX+bY≤1)=,则()
设随机变量X1,X2,…,Xn相互独立,且都在区间(-1,1)上服从均匀分布,则()
设正态总体X~N(μ,σ2),X1,X2,…,Xn为其简单随机样本,样本均值为X,若P{|X-μ|<a)=P{|-μ|<b},则的值()
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
随机试题
下列哪项是急性白血病病人易发生感染的最主要原因()。
下列念珠菌对氟康唑天然耐药的是
男性,38岁。发热1周伴牙龈出血住院。化验:全血细胞减少,骨髓检查证实为急性早幼粒细胞性白血病,第2天出现肉眼血尿,皮肤大片瘀斑。临床怀疑有弥散性血管内凝血,下列检查除哪项外均对DIC有诊断价值
斑蝥的功能是
A.补脾益肾B.清热利湿,分清泄浊C.清热利湿通淋D.利气疏导E.清热利湿,排石通淋石淋的治法是
《物权法》规定,本法所称物权,是指权利人依法对特定的物享有直接支配和排他的权利,包括()
商业银行各级用户应妥善保管自己的用户密码,至少()个月更改一次密码,并登记密码变更登记簿。
下列各项中,属于变动成本的有()。
甲服装有限公司是一家专门生产和销售牛仔裤的传统公司,其生产主要依靠雇佣廉价的劳动力进行手工制造,这些员工几乎没有经验,相比其他利用机器流水线式生产并拥有专业团队的公司,甲公司的牛仔裤经常被客户投诉线头太多,缝合的不好,号码大小也不一致,面对这些,甲公司不仅
吴某,女性,54岁,工人,小学文化,已婚。自我陈述:睡眠差。全身不适伴发冷两个多月。在两个月前,我也不知道怎么回事就出现头痛、头晕、睡眠差,没力气、手酸、胃口不好,去医院看,做了很多检查,也没有发现什么问题。以后这些不舒服更加厉害,吃过中药也没有明显的
最新回复
(
0
)