首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n(n≥3)阶矩阵 若矩阵A的秩为n一1,则a必为( )
设n(n≥3)阶矩阵 若矩阵A的秩为n一1,则a必为( )
admin
2021-01-25
35
问题
设n(n≥3)阶矩阵
若矩阵A的秩为n一1,则a必为( )
选项
A、1。
B、
。
C、-1。
D、
。
答案
B
解析
其中(1)变换:将1行乘以(一1)再分别加到其余各行;(2)变换:将其余各列分别加到第1列。
由阶梯形矩阵知,当1+(n一1)a=0,即a=
时,有r(A)=n一1,故应选B。
转载请注明原文地址:https://kaotiyun.com/show/gwx4777K
0
考研数学三
相关试题推荐
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设z=z(χ,y)由方程χ2-6χy+10y2-2yz-z2+18=0确定的函数,求z=z(χ,y)的极值点和极值.
设f(x)具有二阶导数,且f"(x)>0.又设u(t)在区间[0,a](或[a,0])上连续,证明:
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度函数fX,Y(x|y).
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0,利用闭区间上连续函数的性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
[2010年]箱内有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机的取出2个球.记X为取出的红球个数,Y为取出的白球个数.求cov(X,Y).
(11年)证明方程4arctanχ-χ+=0恰有两个实根.
[2012年]设二维离散型随机变量X,Y的概率分布为求cov(X-Y,Y).
任意3维向量都可用α1=(1,0,1)T,α2=(1,-2,3)T,α3=(a,1,2)T线性表出,则a=_______.
任意一个三维向量都可以由α1=(1,0,1)T,α2=(1,一2,3)T,α3=(a,1,2)T线性表示,则a的取值为________。
随机试题
A.局麻药B.麻醉性镇痛药C.类固醇D.神经破坏性药物E.抗癫痫药物治疗三叉神经痛的药物是
对流行性腮腺炎的护理,以下正确的是
首剂应用较大剂量青霉素治疗钩体病,能出现下列哪种反应
洗胃时每次注入的洗胃液的量常为
如图所示,理想变压器的副线圈上通过输电线接两个相同的灯泡L1和L1,输电线的等效电阻为R,开始时开关S断开,当S接通时,以下说法错误的是()。
下列项目中,在计算联合试运转费时需要考虑的费用包括()。
A公司于2010年1月10日与B公司签订一份标的额为100万元的买卖合同,合同约定采用商业汇票结算方式。2月1日,A公司按照合同约定发出货物,B公司于2月10日签发一张见票后1个月付款的银行承兑汇票。3月5日A公司向C银行提示承兑并于当日获得承兑。3月10
引起并决定教育发展变化的最根本、最内在的因素是()。
Aswehaveseen,thereisnothingaboutlanguageassuchthatmakeslinguisticidentitycoextensivewithnationalidentity."If
A、Gettingchildrentopaintonthewallofbuildings.B、Gettingschoolchildrenintheareatowriteastory.C、Gettinganartis
最新回复
(
0
)