首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
admin
2013-09-03
70
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
,其中a
i
=(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
本题有以下两种较为简单的解法: (I)由题设,任给x
1
,x
2
,…,x
n
,都有f(x
1
,x
2
,…,x
n
)≥0, 因此,f(x
1
,x
2
,…,x
n
)=0当且仅当[*] 该齐次线性方程组仅有零解的充分必要条件是系数行列式不为0, [*] 因此,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,任给不全为零的x
1
,x
2
,…,x
n
, 都有f(x
1
,x
2
,…,x
n
)>0,即当a
1
a
2
…a
n
≠(-1)
n
时,f(x
1
,x
2
,…,x
n
)为正定二次型. (Ⅱ)令[*],此线性变换的矩阵的行列式与(Ⅰ)中行列式相同, 因此当a
1
a
2
…a
n
≠(-1)
n
时,此线性变换可逆,记其逆变换为x=py, 可化原二次型为标准形:y
1
2
+y
2
2
+…+
n
2
, 由于正惯性指数为n,可知原二次型为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/gx54777K
0
考研数学一
相关试题推荐
设函数f,g均可微,z=f(xy,lnx+g(xy)),则=______________.
设函数f(x,y)=|x-y|g(x,y),其中g(x,y)在点(0,0)的某邻域内连续,且g(0,0)=0,则在点(0,0)处()
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3.当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
已知向量组α1=(1,1,1,1),α2=(2,3,4,4),α3=(3,2,1,k)所生成的向量空间的维数是2,则k=_____________________.
求曲线x=acos3t,y=asin3t在t=π/6处的曲率半径.
设平面区域D由直线及两条坐标轴所围成.记则有()
设φ(x)是方程y“+y=0的满足条件y(0)=0,y‘(0)=1的解,证明方程y“+y=f(x)满足条件y(0)=y‘(0)=0的解为
一容器内表面是由曲线y=x2(0≤x≤2,单位:m)绕y轴旋转一周所得到的曲面,现以2m3/min的速率注入某液体,求:当液面升高到1m时液面上升的速率.
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
随机试题
下列不构成专利权终止的法律事实是()
口底及颌下的急性蜂窝织炎危及生命的并发症是【】
十二指肠切除,可影响下述哪些营养素的吸收()。
设计利用穿堂风进行自然通风的板式建筑。其迎风面与夏季最多风向的夹角宜为()。
分析评价开发区规划实施对生态环境的影响,主要包括()影响。
2019年12月11日晚8时15分许,某建筑高度达50m的大型商场,因发电机组电气线路短路形成高温电弧,引燃周围装饰材料并蔓延成火灾。在事故发生的第一时间,法人代表李某(该商场的消防安全责任人)立即启动应急预案,同时组织单位的义务消防队扑救火灾。与此同时,
企业发行的可转换公司债券,期末按规定计算确定的利息费用进行账务处理时,可能借记的会计科目有()。
党章规定:我国社会各方面的基层单位只要有党员三人以上的,都要成立党的基层组织。()
根据下面材料回答下列题。2007年7月份北京市下列各区县中城镇居民最低生活保障人数最少的是()。
尽管这名病人被诊断为植物状态,但她保留了理解口头______并通过大脑活动、而非语音或动作做出______的能力。“欧文表示:”她决定与我们合作,根据我们的______想象特定的任务,这是一个清楚的______行为,确凿无疑地证明,她有意识地认识自己
最新回复
(
0
)