首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
admin
2013-09-03
71
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
,其中a
i
=(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
本题有以下两种较为简单的解法: (I)由题设,任给x
1
,x
2
,…,x
n
,都有f(x
1
,x
2
,…,x
n
)≥0, 因此,f(x
1
,x
2
,…,x
n
)=0当且仅当[*] 该齐次线性方程组仅有零解的充分必要条件是系数行列式不为0, [*] 因此,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,任给不全为零的x
1
,x
2
,…,x
n
, 都有f(x
1
,x
2
,…,x
n
)>0,即当a
1
a
2
…a
n
≠(-1)
n
时,f(x
1
,x
2
,…,x
n
)为正定二次型. (Ⅱ)令[*],此线性变换的矩阵的行列式与(Ⅰ)中行列式相同, 因此当a
1
a
2
…a
n
≠(-1)
n
时,此线性变换可逆,记其逆变换为x=py, 可化原二次型为标准形:y
1
2
+y
2
2
+…+
n
2
, 由于正惯性指数为n,可知原二次型为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/gx54777K
0
考研数学一
相关试题推荐
计算三对角行列式
设多项式,则x2的系数和常数项分别为()
设函数f(x)在x=a可导,且f(a)≠0,则=_________________.
设函数x=x(t)由方程tcosx+x=0确定,又函数y=y(x)由方程ey-2-xy=1确定,求复合函数y=y(x(t))的导数.
求曲线y=lnx的最大曲率.
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x-1)2+y2=1围成的立体的体积最小,并求出最小体积.
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域.
计算,其中∑为立体的边界曲面
将下列曲线化为参数方程:
设,其中t为参数,求.
随机试题
“精之藏制虽在肾。而精之主宰则在心”此论是何书提出
风湿性心瓣膜病并发感染性心内膜炎时,最支持感染性心内膜炎诊断的是
对放射线不敏感的肿瘤是
丁以其管理才能入伙是否合法?丁在合伙企业之外另建新的运输企业是否合法?
同一建筑物内应采用统一规格的消火栓、水枪和水带,其中,水带长度不应超过()m。地表水作为室外消防水源时,消防车取水高度不符合要求的有()。
张某为某单位的会计人员,平时工作努力,钻研业务、积极学习提供合理化建议,这体现了张某具有()的职业道德。
已实施检验检疫的出境货物,由于客观原因不能履行合同的,报检人应向检验检疫机构申请办理撤销报检手续。()
下列各项中,属于侵犯注册商标专用权的行为的是()。
教育实践活动开展以来,很多地方和部门认真听取群众意见、仔细查摆问题。但也有一些地方、一些领导干部__________,绕开“四风"听意见,避开重点谈不足,或者不把自己摆进去,说自己轻轻带过,谈别人滔滔不绝,或者找的都是无关痛痒的“小问题”,________
下列选项中,属于继受取得所有权的方式的是()。
最新回复
(
0
)