首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai=(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型?
admin
2013-09-03
97
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
,其中a
i
=(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
本题有以下两种较为简单的解法: (I)由题设,任给x
1
,x
2
,…,x
n
,都有f(x
1
,x
2
,…,x
n
)≥0, 因此,f(x
1
,x
2
,…,x
n
)=0当且仅当[*] 该齐次线性方程组仅有零解的充分必要条件是系数行列式不为0, [*] 因此,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,任给不全为零的x
1
,x
2
,…,x
n
, 都有f(x
1
,x
2
,…,x
n
)>0,即当a
1
a
2
…a
n
≠(-1)
n
时,f(x
1
,x
2
,…,x
n
)为正定二次型. (Ⅱ)令[*],此线性变换的矩阵的行列式与(Ⅰ)中行列式相同, 因此当a
1
a
2
…a
n
≠(-1)
n
时,此线性变换可逆,记其逆变换为x=py, 可化原二次型为标准形:y
1
2
+y
2
2
+…+
n
2
, 由于正惯性指数为n,可知原二次型为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/gx54777K
0
考研数学一
相关试题推荐
二元函数,在(0,0)点处()
设则行列式第1列各元素的代数余子式之和A11+A21+A31+A41=_________________.
求极限
设函数f(x)在x=a可导,且f(a)≠0,则=_________________.
求曲线的渐近线.
计算,其中Ω为z≥x2+y2与x2+y2+z2≤2所围成的区域
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
求下列微分方程满足初始条件的特解:
曲面z-=13-x2-y2将球面x2+y2+z2=25分成三部分,求这三部分曲面面积之比.
设φ(x)是方程y“+y=0的满足条件y(0)=0,y‘(0)=1的解,证明方程y“+y=f(x)满足条件y(0)=y‘(0)=0的解为
随机试题
关于学习领导科学的意义,说法错误的是【】
下列对建设项目环境风险评价的工作流程的描述,顺序正确的是()。
下列有关投资的说法,错误的是()。
建立城镇职工基本医疗保险制度的原则是( )。
根据刑事诉讼法的规定,合议庭对复杂重大案件,可以提请院长决定将案件提交审判委员会讨论。合议庭提请院长将案件提交审判委员会讨论的时间应是在()。
万紫干红的奇花异卉,不仅美化着人们的生活环境,陶冶着人们的情操,而且还具有较高的药用价值。下列选项关于花卉药用价值的叙述,不正确的是()。
近年来,同家在重大建设项目招标采购等领域,__________了一系列政策,鼓励提高国产化水平,规定相关产品的“国产化率”(即国内生产率)必须达到一定指标,才能参与重大建设项目__________,并享受进口部件退税优惠。填入横线部分最恰当的一项是
Hesufferedfrom____________________.
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
Thepassagegivesageneraldescriptionofthewaystopreparefortests.Simplyscanningovertextbooksornotesisnotenough
最新回复
(
0
)