首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2020-03-15
118
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关.例如向量组η
1
,η
2
,η
3
,η
4
η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
等价,但前者线性相关,因而不能是基础解系.故D不正确.B、C均线性相关,因此不能是基础解系.故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
一η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,又由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
且
知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/h0D4777K
0
考研数学三
相关试题推荐
已知p=是矩阵A=的一个特征向量。求参数a,b及特征向量P所对应的特征值;
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记P=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=___________。
已知二维随机变量(X,Y)的概率密度为试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;
设函数f(x)=在(一∞,+∞)内连续,且=0,则常数a,b满足()
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
设D1是由曲线和直线y=a及x=0所围成的平面区域;D2是由曲线和直线y=a及x=1所围成的平面区域,其中0<a<1.问当a为何值时,V1+V2取得最小值?试求此最小值.
已知函数y=y(x)在任意点x处的增量且当△x→0时,a是△x的高阶无穷小,y(0)=π,则y(1)等于
设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为().
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
随机试题
一般授权立法
下列哪些属于进展期胃癌的常见肉眼类型
脊柱裂最常发生于
葡萄糖耐量试验中的葡萄糖可换用为()。
因原保荐机构被撤销保荐机构资格而另行聘请保荐机构的,另行聘请保荐机构持续督导的时间不得少于()个完整的会计年度。
关于企业缴纳的下列税费中,不得在企业所得税前扣除的有()。
根据《妇女权益保障法》,妇女的生命健康权不受任何侵犯。下列行为中,侵犯妇女生命健康权的行为有()
请从下面所给的四个句子中找出一个没有歧义的句子来。()
Angerisanemotionthatcanbedifficulttodealwith.Sometimesit’sexperiencedasafleeting【B1】______whileothertimesitc
A、Apersonwhohasahearingproblem.B、AdirectorwhowillcarryoutthetrialofBrailletelephonesysteminAmerica.C、Atest
最新回复
(
0
)