首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=____________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=____________。
admin
2019-01-19
35
问题
设A是一个五阶矩阵,A
*
是A的伴随矩阵,若η
1
η
2
是齐次线性方程组Ax=0的两个线性无关的解,则r(A
*
)=____________。
选项
答案
0
解析
η
1
,η
2
是齐次线性方程组Ax=0的两个线性无关的解。由方程组的基础解系所含解向量的个数与系数矩阵秩的关系,可得n—r(A)≥2,即r(A)≤3。又因为A是五阶矩阵,所以|A|的四阶子式一定全部为零,则代数余子式A
ij
为零,即A
*
=O,所以r(A
*
)=0。
转载请注明原文地址:https://kaotiyun.com/show/mmP4777K
0
考研数学三
相关试题推荐
已知矩阵A=与对角矩阵相似,求An.
设线性方程组A3×4X=b有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是().
设f(x)可导,证明:F(x)=f(x)[1+|ln(1+arctanx)||在x=0处可导的充分必要条件是f(0)=0.
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
已知非齐次线性方程组有3个线性无关的解.(1)证明:方程组的系数矩阵A的秩r(A)=2.(2)求a,b的值及方程组的通解.
已知A,B均是m×n矩阵,r(A)=n一s,r(B)=n一r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
随机试题
请用上“茶叶”“创业”“劣质”“下雨”“悉心”这五个词编一个故事。
房间隔缺损特征性的改变是
某沥青混合料车辙试验结果如下表所示,请回答以下问题。关于沥青混合料车辙试验结果,下列说法正确的有()。
职业健康安全与环境管理体系(),体系文件写到的要做到,做到的要有有效记录。
根据《支付结算办法》的规定,付款人承兑商业汇票,必须满足所附有的条件。()
下列关于房产供给的叙述错误的是()
(),就是执法必严,使应负刑事责任的犯罪分子不能逃避法律的制裁,特别是对于那些严重的刑事犯罪分子必须严厉打击。
甲、乙、丙共谋抢劫一杂货店,在去踩点的途中,遇到他们的朋友丁,于是邀丁一起干。丁拒绝,甲说不干就算了,现在陪我们一起去看看。在察看该路边店时,丁告诫甲、乙、丙:店在路边,进去时行动要快,路边有公用电话,要防止报警,还随手扯断了电话线,尔后四人离去。当晚,甲
简述可撤销的民事法律行为与无效民事行为的区别。
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howto
最新回复
(
0
)