首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(12)已经知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换x=QY将f化为标准形.
(12)已经知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换x=QY将f化为标准形.
admin
2018-08-01
72
问题
(12)已经知A=
,二次型f(x
1
,x
2
,x
3
)=x
T
(A
T
A)x的秩为2.
(Ⅰ)求实数a的值;
(Ⅱ)求正交变换x=QY将f化为标准形.
选项
答案
(Ⅰ)因为r(A
T
A)=r(A),对A施以初等行变换 [*] 可见当a=-1时,r(A)=2,所以a=-1. (Ⅱ)由于a=-1,所以A
T
A=[*].矩阵A
T
A的特征多项式为 |λE-A
T
A| [*] =(λ-2)(λ
2
-6A)=λ(λ-2)(λ-6), 于是得A
T
A的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 对于λ
1
=2,由求方程组(2E-A
T
A)x=0的一个非零解,可得属于λ
1
=2的一个单位特征向量[*](1,-1,0)
T
; 对于λ
2
=6,由求方程组(6E-A
T
A)x=0的一个非零解,可得属于λ
2
=6的一个单位特征向量[*](1,1,2)
T
; 对于λ
3
=0,由求方程组(A
T
A)x=0的一个非零解,可得属于λ
3
=0的一个单位特征向量[*](1,1,-1)
T
. 令矩阵Q=[*] 则f在正交变换x=Qy下的标准形为f=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/h2j4777K
0
考研数学二
相关试题推荐
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
设A是m×n矩阵,且m>n,下列命题正确的是().
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
证明方程x+p+qcosx=0有且仅有一个实根,其中p,q为常数,且0
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
随机试题
解释下列括号内的词语:而吾未尝以此(自多)者,自以比形于天地,而受气于阴阳。
A、Theyneedcareandaffection.B、Theyarefondofround-the-worldtrips.C、Theyaremostlyformbrokenfamilies.D、Theyarelik
附着于喙突的肌肉是
甲状腺一侧切除术后发生窒息最可能的原因是
某安装公司分包一商务楼(一至五层为商场,六至三十层为办公楼)的变配电工程,工程的主要设备(三相干式电力变压器、手车式开关柜和抽屉式配电柜)由业主采购,设备已运抵施工现场,其他设备、材料由安装公司采购。合同工期60天,并约定提前1天,奖励5万元人民币,延迟1
对某种商品或者服务具有监督职责的组织所控制,而由该组织以外的单位或者个人使用于其商品或者服务,用以证明该商品或者服务的原产地、原料、制造方法、质量或者其他特定品质的商标是()。
在我国大连商品交易所交易的期货合约有( )。
试对金融监管的三道防线分别加以分析。
垄断利润的形成,关键在于
利率期货套利交易包括()两大类。
最新回复
(
0
)