首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2018-06-27
98
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*]∫
0
t
f
2
(x)dx/∫
0
t
f(x)dx, 而相应的曲边梯形的面积为∫
0
t
f(x)dx.见图6.2.按题意 [*] 即∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx(x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*] (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边同乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(x)e
-4t
]’=0,并由初始条件得f(t)=e乱,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/h4k4777K
0
考研数学二
相关试题推荐
设函数f(x)在(0,+∞)内可导,f(x)>0.且求f(x);
设有以下函数①②③④则在点x=0处可导的共有
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
设二元可微函数F(z,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成求此二元函数F(x,y).
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设可导函数x=x(t)由方程所确定,其中可导函数f(u)>0,且f(0)=f’(0)=1,则x’’(0)=
随机试题
A、Becausetheyarenothighlymotivated.B、Becausetheyarenotrightlyencouraged.C、Becausetheyarenotquitecurious.D、Beca
A.四气B.五味C.归经D.升降浮沉表示药物对人体作用的不同趋向性的是
股骨头骨软骨病的病理分期是
急性上呼吸道感染最常见的病因是()。
养护温度t对混凝土强度发展的影响是()。
图中甲、乙均为显微镜目镜,丙、丁均为显微物镜,哪种组合可以获得倍数最高的观察效果?
根据下面材料回答问题。2009年末,我国就业人员总量达到77995万人,比2005年末增加了2170万人。随着城市化和工业化进程的不断推进,城镇吸纳就业的能力增强,促进了乡村富余劳动力向城镇的转移。2005年到2009年,城镇就业人员总量由273
A、清华园B、大师之园C、学生之园D、校长之园B录音中说“清华大学具有‘大师之园’的美称”,所以选B。
Frenchareelegantpeople.Theyareartistsineverydaylife,havingaverygoodtasteineverything.Theydon’tlikeAmericant
A、Heisalwaysinahurry.B、Heisquickinmakingdecisions.C、Heisalwaysthefirsttoarriveattheairport.D、Heusuallydo
最新回复
(
0
)