首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2018-06-27
91
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*]∫
0
t
f
2
(x)dx/∫
0
t
f(x)dx, 而相应的曲边梯形的面积为∫
0
t
f(x)dx.见图6.2.按题意 [*] 即∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx(x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*] (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边同乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(x)e
-4t
]’=0,并由初始条件得f(t)=e乱,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/h4k4777K
0
考研数学二
相关试题推荐
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求切线L的方程.
设动点P(x,y)在曲线9y=4x2上运动,且坐标轴的单位长是1cm.如果P点横坐标的速率是30cm/s,则当P点经过点(3,4)时,从原点到P点间距离r的变化率是_________.
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.对(I)中的ξ∈(a,b),求
设二元可微函数F(z,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成求此二元函数F(x,y).
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率圆方程.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
随机试题
从教育督导的对象看,其任务具有的特点是
特殊管理药品管理模式的特点是()
重度新生儿缺氧缺血性脑病症状最明显的时间是
男性,68岁,因尿潴留给予导尿1次,随后出现畏寒、发热3天,伴头痛,全身酸痛及尿频尿痛来诊。化验:WBC23.1×109/L,中性粒细胞0.86,尿液检查WBC1~3/HP,蛋白(+)。给予呋喃坦啶、庆大霉素5天,症状未见好转。以下哪项处理最合适
胸部照片中肺纹理的影像,形成的主要组织是
企业会计期末结账时,应将本期发生的各类支出转入()。
下列人群中,可以被称为团体的是()。
某设备的账面价值为80000元,预计使用年限为5年,预计净残值为5000元,按年数总和法计提折旧,该设备在第三年应计提的折旧额为()元。
十一期间,裘先生由于店铺生意太忙,招用了17岁的小康为他工作,小康非常开心,虽然每天工作14个小时,但薪资待遇非常优厚。以下说法正确的是()。
简述上下级人民检察院的关系及其表现。
最新回复
(
0
)