首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题成立的是( ).
下列命题成立的是( ).
admin
2019-01-06
74
问题
下列命题成立的是( ).
选项
A、若f(x)在x
0
处连续,则存在δ>0,使得f(x)在|x-x
0
|<δ内连续
B、若f(x)在x
0
处可导,则存在δ>0,使得f(x)在|x-x
0
|<δ内可导
C、若f(x)在x
0
的去心邻域内可导,在x
0
处连续且
存在,则f(x)在x
0
处可导,且
D、若f(x)在x
0
的去心邻域内可导,在x
0
处连续且
不存在,则f(x)在x
0
处x=x
0
不可导
答案
C
解析
设
显然f(x)在x=0处连续,对任意的x
0
≠0,因为
不存在,所以f(x)在x
0
处不连续,A不对;
同理f(x)在x=0处可导,对任意的x
0
≠0,因为f(x)在x
0
处不连续,所以f(x)在x
0
处也不可导,B不对;
因为
其中ξ介于x
0
与x之间,且
存在,所以
也存在,即f(x)在x
0
处可导且
选C;
令
不存在,D不对.
转载请注明原文地址:https://kaotiyun.com/show/h7W4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)上具有连续导数,且f’(0)≠0.令F(x)=∫0x(2t一x)f(t)dt.求证:(I)若f(x)为奇函数,则F(x)也是奇函数.(Ⅱ)(0,0)是曲线y=F(x)的拐点.
设函数f(x)可微,且满足求f(x).
设A是n阶正定矩阵,证明|A+2E|>2n.
设A是n阶实反对称矩阵,证明(E一A)(E+A)-1是正交矩阵.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求U和V的相关系数p.
(10年)设函数f(χ),g(χ)具有二阶导数,且g〞(χ)<0.若g(χ0)=a是g(χ)的极值,则f(g(χ))在χ0取极大值的一个充分条件是【】
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
(96年)设其中ai≠aj(i≠j,i,j=1,2,…,n).则线性方程组ATX=B的解是_______.
设D是有界闭区域,下列命题中错误的是
随机试题
对麻疹前驱期诊断极有帮助的是
以下所列项目不属黑色主病范围者为
关于缺乏维生素B12所致营养性巨幼红细胞贫血的病因,以下哪项不正确
纵向承重体系荷载的主要传递路线是()
下列各项中,符合城镇土地使用税有关纳税义务发生时间规定的有()。
下列各项中,注册会计师可能认为需要增加强调事项段的有()。
很早以前科学家就发现有些人对于某些药物的反应和其他病人不同。例如,某种麻醉用肌肉松弛剂会导致特定的人无法呼吸。后来,科学家发现产生这种现象的原因在于这类人拥有特定的基因。这也就带来了一个问题:研究人们之间的遗传差异是否可以促进医学发展出更高级的治疗手段,也
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
Manypeopleinindustryandtheservices,whohavepracticalexperienceofnoise,regardanyinvestigationofthisquestionasa
A、Hewillhelpthewomancarrythesuitcase.B、Thewoman’swatchistwentyminutesfast.C、Thewomanshouldn’tmakesuchabigf
最新回复
(
0
)