首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a3;(Ⅲ):a1,a2,a3,a5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a3;(Ⅲ):a1,a2,a3,a5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
admin
2019-11-25
54
问题
设向量组(Ⅰ):a
1
,a
2
,a
3
;(Ⅱ):a
1
,a
2
,a
3
;(Ⅲ):a
1
,a
2
,a
3
,a
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a
1
,a
2
,a
3
,a
5
-a
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以a
1
,a
2
,a
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量a
4
可由向量组a
1
,a
2
,a
3
线性表示.因为向量组(Ⅲ)的秩为4,所以a
1
,a
2
,a
3
,a
5
线性无关,即向量a
5
不可由向量组a
1
,a
2
,a
3
线性表示,故向量a
5
-a
4
不可由a
1
,a
2
,a
3
线性表示,所以a
1
,a
2
,a
3
,a
5
-a
4
线性无关,于是向量组a
1
,a
2
,a
3
,a
5
-a
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/h9D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设A=[α1,α2,α3]是3阶矩阵,且|A|=4,若B=[α1-3α2+2α3,α2-2α3,2α2+α3],则|B|=______.
已知P为3阶非零矩阵,且满足PQ=O,则()
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是________.
已知B=,矩阵A相似于B,A*为A的伴随矩阵,则︱A*+3E︱=_________________________。
设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组AX=0的通解为c(1,-2,1,0)T,c任意,则下列选项中不对的是()。
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
求极限
随机试题
A.甲状腺激素B.促甲状腺激素C.促甲状腺激素释放激素D.生长激素E.生长激素释放激素幼犬。生长迟缓、反应迟钝且呆滞,与该病症有关的下丘脑激素是
标志着中国诗歌从民间集体歌唱过渡到了诗人独立创作的新阶段的是
下列反应中不能被6-巯基嘌呤抑制的是
下列经济活动中,不属于房地产业的是()。
尽管借款人目前有能力偿还贷款本息,但是存在一些可能对偿还贷款本息产生不利影响的因素,属于()。
某企业正在对自己的销售部门人力资源供给进行分析与预测,通过对2001年~2006年销售部门人力资源人员变动情况分析,得到销售部门人员变动矩阵表如下:该企业2006年有业务员30人,业务主管10人,销售经理3人,销售总监1人。根据上述资料,回答下列问题:
哪种药物较少引起肝功能损害
陶行知为了改变农村的教育面貌,探索了乡村教育的新模式,他所提倡的教师培养模式是()
18世纪末,在英国倡导“星期日学校”的教育家是()
1923年,陈独秀说:“五四运动虽然未能达到理想的成功,而在此运动中最努力的革命青年,逐接受世界的革命思潮,由空想而实际运动,开始了中国革命之新的方向。”陈独秀所说的“中国革命之新的方向”是指
最新回复
(
0
)