首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的特征值为1,-1,0,对应的特征向量分别为α1,α2,α3,若B=A2-2A+3E,试求B-1的特征值和特征向量.
设3阶矩阵A的特征值为1,-1,0,对应的特征向量分别为α1,α2,α3,若B=A2-2A+3E,试求B-1的特征值和特征向量.
admin
2017-06-26
41
问题
设3阶矩阵A的特征值为1,-1,0,对应的特征向量分别为α
1
,α
2
,α
3
,若B=A
2
-2A+3E,试求B
-1
的特征值和特征向量.
选项
答案
Bα=(A
2
-2A+3E)α
1
=A
2
α
1
-2Aα
1
+3α
1
=λ
1
2
α
1
-2λ
1
α
1
+3α
1
=(λ
1
2
-2λ
1
+3)α
1
=2α
1
,类似可得Bα
2
=6α
2
,Bα
3
=3α
3
,故B的特征值为2,6,3,对应的线性无关特征向量分别为α
1
,α
2
,α
3
,得B
-1
的特征值为[*],对应的特征向量分别为k
1
α
1
,k
2
α
2
,k
3
α
3
(k
i
为任意非零常数,i=1,2,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/hAH4777K
0
考研数学三
相关试题推荐
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
[*]利用奇偶函数在对称区间上的积分性质得
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
判定级数与级数的敛散性.
设y(x)是由x2+xy+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=_______.
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:收敛;
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
甲、乙两地相距skm,汽车从甲地匀速地行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分与固定部分组成:可变部分与速度(单位为km/h)的平方成正比,比例系数为b;固定部分为a元.试问为使全程运输成本最小,汽车应以多大速度行驶?
随机试题
半月板撕裂的MRI特点为
根据国际生化学会委员会的规定,酶的一个国际单位是指
合谷在调汗方面的作用常与何穴配伍( )。
在用标准法计算操作风险经济资本时,表示商业银行各产品线的操作风险暴露的β值代表()。
通过分析儿童的绘画、日记、作品等以了解儿童心理特点的是()。
tendtoconsideredarisethinkofA.itmaybe【T13】______foolishB.misunderstandings【T14】______betweenpeoplefromculture
(2014年)设函数f(u)具有连续导数,z=f(excosy)满足若f(0)=0,求f(u)的表达式.
(1990年)设α为常数,则级数
A、 B、 C、 D、 D宽带城域网的网络平台采用层次结构,可以分为核心交换层、边缘汇聚层和用户接入层。核心交换层连接多个汇聚层与主干网络,主要承担高速数据交换的功能,设计重点是可靠性、可扩展性与开放性。边缘
下列关于局域网互联设备特点的描述中,错误的是
最新回复
(
0
)