首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是( ).
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是( ).
admin
2019-09-27
24
问题
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是( ).
选项
A、∫
0
x
t[f(t)-f(-t)]dt
B、∫
0
x
t[f(t)+f(-t)]dt
C、∫
0
x
f(t
2
)dt
D、∫
0
x
f
2
(t)dt
答案
B
解析
因为t[f(t)-f(-t)]为偶函数,所以∫
0
x
t[f(t)-f(-t)]dt为奇函数,A不对;
因为f(t
2
)为偶函数,所以∫
0
x
f(t
2
)dt为奇函数,C不对;
因为不确定f
2
(t)的奇偶性,所以D不对;
令F(x)=∫
0
x
t[f(t)+f(-t)]dt,
F(-x)=∫
0
-x
t[f(t)+f(-t)]dt=∫
0
x
(-u)[f(u)+f(-u)](-du)=F(x),选B.
转载请注明原文地址:https://kaotiyun.com/show/hFS4777K
0
考研数学一
相关试题推荐
计算.
设μ=μ(x,y,z)连续可偏导,令.若,证明:μ仅为r的函数.
设矩阵且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
设有微分方程y’-2y=φ(x),其中试求,在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0。
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设函数z=z(x,y)是由方程x2-6xy+10y2-2yz-z2+32=0确定,讨论函数z(x,y)的极大值与极小值.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y2’之积成反比,比例系数为,求y=y(x).
设l为圆周一周,则空间第一型曲线积分=__________.
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题①设f'(x0)存在,则也必存在.②设存在,则f'(x0)也必存在.③设f'(x0)不存在,则也必不存在.④设不存在,则f'(x0)也必不存在.其中不正确的个数为
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x(x0,y0)=0,F′y(x0,y0)>0,F″xx(x0,y0)<0.
随机试题
简述出版物发行质量规范管理的工作要求。
女性。25岁。有低热、乏力、四肢关节肌肉疼痛2月。查体:T38℃,颧部红色片状斑疹,肝肋下一指、脾肋下二指,双手掌指关节、各指间关节、双膝关节肿胀、压痛.双下肢凹陷性水肿。化验:ESR110mm/h、C3降低尿蛋白(++)、血压150/90mmHg。
移植抗原是指
对ARDS的诊断和病情判断有重要意义的检查是( )。
建设单位要建立和完善水环境监测制度,对厂区及周边地下水进行监测,监测点布置应遵循的原则包括()。
()的主要目是保持各级各类规划顺序原则的一致性,保持政策的有效性和连续性。
全站仪主要由组成。()
发现学习的首倡者是()。
2,3,6,15,()
下列关于栈叙述正确的是()。
最新回复
(
0
)