首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
admin
2020-03-15
97
问题
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
选项
答案
设F(x)在[a,b]上的最大值与最小值分别是M与m,利用G(x)≥0且G(x)≠0即知当x∈[a,b]时mG(x)≤F(x)G(x)≤MG(x), 由定积分的性质即知 m∫
a
b
G(x)dx=∫
a
b
mG(x)dx≤∫
a
b
F(x)G(x)dx≤∫
a
b
MG(x)dx=M∫
a
b
G(x)dx, 由于G(x)≥0且G(x)≠0,故∫
a
b
G(x)dx>0.从而有 [*] 再由F(x)是以m与M分别为其最小值与最大值的区间[a,b]上的连续函数即知存在ξ∈[a,b]使得 [*] 即∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hMD4777K
0
考研数学三
相关试题推荐
设随机变量X~,且P{|X|≠|Y|}=l。求X与Y的联合分布律,并讨论X与Y的独立性;
设ξ,η是两个相互独立且服从同一分布的随机变量,已知ξ的分布率为P{ξ=i}=,i=1,2,3。又设X=max(ξ,η),Y=min(ξ,η)。写出二维随机变量的分布律,填在下表中:
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
求二重积分ydσ,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
计算二重积分I=其中计D={(r,θ)|0≤r≤secθ,0≤θ≤}。
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=。求:V=|X一Y|的概率密度fV(v)。
设a是常数,则级数()
设总体X的概率密度为X1,…,Xn为来自X的一个简单随机样本,求θ的矩估计量。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
随机试题
Believeitornot,opticalillusion(错觉)cancuthighwaycrashes.(78)Japanisacaseinpoint.(79)Ithasreducedautomob
经过第二次减数分裂形成精子细胞的是
引起菌群失调症的原因是
行政行为是享有行政权能的组织(行政主体)运用行政权对行政相对人所做的法律行为。它主要具有( )特征。
某制糖企业污水处理站好氧处理工艺为普通活性污泥法,宜采用的二沉池类型有()。
货物招标投标管理中货物运输工作不包括()。
在下列审计程序中,最有助于注册会计师识别对持续经营能力产生重大疑虑的事项和情况的是()。
加涅的学习结果分类中的认知策略与其提出的信息加工模式中相似的结构是
学习策略是学习者制定的学习计划,由认知策略构成。()
InAmerica,olderpeoplerarelylivewiththeiradultchildren.Butinmanyothercultureschildrenareexpectedtocare【C1】___
最新回复
(
0
)