首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
admin
2020-03-15
73
问题
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
选项
答案
设F(x)在[a,b]上的最大值与最小值分别是M与m,利用G(x)≥0且G(x)≠0即知当x∈[a,b]时mG(x)≤F(x)G(x)≤MG(x), 由定积分的性质即知 m∫
a
b
G(x)dx=∫
a
b
mG(x)dx≤∫
a
b
F(x)G(x)dx≤∫
a
b
MG(x)dx=M∫
a
b
G(x)dx, 由于G(x)≥0且G(x)≠0,故∫
a
b
G(x)dx>0.从而有 [*] 再由F(x)是以m与M分别为其最小值与最大值的区间[a,b]上的连续函数即知存在ξ∈[a,b]使得 [*] 即∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hMD4777K
0
考研数学三
相关试题推荐
设随机变量X在1,2,3中等可能取值,随机变量y在1~X中等可能地取值。求:二维随机变量(X,Y)的联合分布律及边缘分布律;
设ξ,η是两个相互独立且服从同一分布的随机变量,已知ξ的分布率为P{ξ=i}=,i=1,2,3。又设X=max(ξ,η),Y=min(ξ,η)。求随机变量X的数学期望E(X)。
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤l}。
求二重积分(x一y)dxdy,其中D={(x,y)|(x一1)2+(y一1)2≤2,y≥x}。
求函数u=x3+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。计算并化简PQ;
设a是常数,则级数()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
随机试题
许某与汤某系夫妻,婚后许某精神失常。二人提出离婚,某县民政局准予离婚。许某之兄认为许某为无民事行为能力人,县民政局准予离婚行为违法,遂提起行政诉讼。县民政局向法院提交了县医院对许某作出的间歇性精神病的鉴定结论。许某之兄申请法院重新进行鉴定。下列哪些选项是正
顺铣方式主要用于精加工及铣削薄壁件、塑料件和尼龙件。
某高校为改善教育经费不足的状况,多方筹集资金开办了一家校办企业,命名为某实业发展公司。2009年10月,该公司为扩大经营规模,拟向某银行贷款300万元。银行要求该公司提供担保,但由于贷款数额太大无人愿意提供担保。这时银行提出可以由其主办人某高校作保证人,公
激光构造深度仪的测值应通过相关性试验建立相关性关系式。转换为铺砂法构造深度值后,才能进行测试结果的评定。()
斜拉桥主梁施工监控测试的主要内容( )。
暗沟采用混凝土浇筑或浆砌片石砌筑时,要求满足的条件有()。
某企业将自产的一批应税消费品(非金银首饰)用于在建工程。该批消费品成本为750万元,计税价格为1250万元,适用的增值税税率为17%,消费税税率为10%。计入在建工程成本的金额为()万元。
惩罚最为严厉的法律责任是()
我国解决“三农问题”的根本途径是使农村城市化。()
有人把香港说成是“文化沙漠”。实际上,香港有着其独特的文化氛围。在电影制作方面,香港名列世界前茅,其流行歌曲在全球华人中有着广泛的影响,而且还有8所知名的大学。这座城市特殊的历史和地理因素造就了一种多样化的文化。每年一度由政府主办的艺术嘉年华为当地艺术家展
最新回复
(
0
)