首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得 ∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
admin
2020-03-15
111
问题
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
选项
答案
设F(x)在[a,b]上的最大值与最小值分别是M与m,利用G(x)≥0且G(x)≠0即知当x∈[a,b]时mG(x)≤F(x)G(x)≤MG(x), 由定积分的性质即知 m∫
a
b
G(x)dx=∫
a
b
mG(x)dx≤∫
a
b
F(x)G(x)dx≤∫
a
b
MG(x)dx=M∫
a
b
G(x)dx, 由于G(x)≥0且G(x)≠0,故∫
a
b
G(x)dx>0.从而有 [*] 再由F(x)是以m与M分别为其最小值与最大值的区间[a,b]上的连续函数即知存在ξ∈[a,b]使得 [*] 即∫
a
b
F(x)G(x)dx=F(ξ)∫
a
b
G(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/hMD4777K
0
考研数学三
相关试题推荐
计算,其中D={(x,y)|0≤y≤min{z,1一x}}。
设平面区域D由直线x=3y,y=3x及x+y=8围成。计算x2dxdy。
微分方程y'+y=e-xcosx满足条件y(0)=0的特解为_________。
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果Yn=,则当常数c=__________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布。
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。求总体X的分布函数F(x);
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得eη-ξ[f(η)+f'(η)]=1。
设总体X的概率分布如下表所示其中θ(0
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
随机试题
某农业企业有一张带息票据,面额为6000元,票面利率8%,出票日期为6月15日,到期日为8月14日(共60天),采用单利计算,则该票据的到期利息为()元。
当前背景下,宏观调控既要“防风险”又要“稳增长”。传统的逆周期调节能够较好地应对经济的短期波动,面对国内外经济的长期结构性调整则常常________。这就要求宏观调控________,而跨周期调节正是在顶层设计的宏观调控框架下,促进不同政策工具的关联匹配,
“水谷之海”是指
医生手指用力较重的诊脉手法是()
手少阳三焦经起止穴分别是手太阳小肠经起止穴分别是
产程加速期是指临产后
自电网引入的线路施工和通电尚需一段时日.而工程又急需开工,总承包单位用自备电源(如柴油发电机组)时,总承包单位应()。
下列各项中,属于企业损失的有()。
电影明星都是学生学习的榜样,提倡初中生追星。()
About84%ofpeoplehavementalhealthproblemsandathirdoftheUKgeneralpublicfeelsisolated,accordingtoanewreport.
最新回复
(
0
)