首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-01-19
77
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
。
B、kα
1
。
C、k(α
1
+α
2
)。
D、k(α
1
一α
2
)。
答案
D
解析
因为A是秩为n一1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
),故选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以A选项不正确;若α
1
=0,则B选项不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时C选项不正确。
转载请注明原文地址:https://kaotiyun.com/show/HmP4777K
0
考研数学三
相关试题推荐
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
已知三元二次型xTAx经正交变换化为2y12—y22—y32,又知A*α=α,其中α=(1,1,一1)T,求此二次型的表达式.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
随机试题
国务院的领导权表现在:_________;_________;_________;_________;_________。
进口设备的重置成本包括
漂白粉有效氯低于多少时不能使用
下列不符合围生儿的是()
()不但是施工监理重要的工作内容,也是工程项目质量控制的重点。
事业单位当年经营收入扣除经营支出等后的余额,无论是正数还是负数均结转到结余分配。()
一般资料:求助者,女性,48岁,公务员。案例介绍:求助者极力阻止女儿与他人婚外情的关系,导致母女矛盾。求助者痛苦不已,主动前来寻求帮助。下面是心理咨询师与该求助者的咨询对话。心理咨询师:通过我刚才的介绍,您已经对心理咨询有了初
三山五岳在中国虽不是最高的山,但都________在平原或盆地之上,这样也就显得格外________。东、西、中三岳都位于黄河岸边,黄河是中华民族的摇篮,是华夏祖先最早定居的地方。《诗经》中有“泰山岩岩,鲁邦所瞻”“嵩高维岳,骏极于天”等诗句,可以看出泰山
请在“答题”菜单中选择相应的命令,并按照题目要求完成下面的操作。注意:以下文件必须保存在考生文件夹下。小李今年毕业后,在一家计算机图书销售公司担任市场部助理,主要的工作职责是为部门经理提供销售信息的分析和汇总。请你根据销售数据
"Time"saystheproverb"ismoney".Thismeansthateverymomentwell-spentmayputsomemoneyintoourpockets.【T1】Ifourtim
最新回复
(
0
)