首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-01-19
53
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
。
B、kα
1
。
C、k(α
1
+α
2
)。
D、k(α
1
一α
2
)。
答案
D
解析
因为A是秩为n一1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
),故选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以A选项不正确;若α
1
=0,则B选项不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时C选项不正确。
转载请注明原文地址:https://kaotiyun.com/show/HmP4777K
0
考研数学三
相关试题推荐
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设α1=,α2=,α3=,则α1,α2,α3经过施密特正交规范化后的向量组为________.
随机试题
胸腺与骨髓是中枢淋巴器官。()
A、普通饮食B、软质饮食C、流质饮食D、高蛋白饮食E、低盐饮食心脏病患者应采用
下列哪项不是亡阳证的表现
A公司2015年6月末部分账户资料如下:要求:根据以上资料计算下列资产负债表的期末余额。“存货”项目期末余额为()元。。
个人征信系统所收集的个人信用信息中的个人基本信息中,不包括()。
20世纪90年代,美国经济呈现繁荣景象,在此期间,成为经济的主导产业的是()
简述遗忘的规律,并结合遗忘规律谈一下如何有效组织复习。
周恩来总理青年时代立志“为中华之崛起而读书”,这种学习动机属于()。
大多数大方的人都是好人,但也有一些自私自利的人也是好人,不过,所有的好人都有一个特征:从不轻易伤害别人。如果上述陈述属实,下列选项中结论正确的是:
按保险风险可将人身意外伤害保险分为普通意外伤害保险和特定意外伤害保险。下列属于普通意外伤害保险的有()。
最新回复
(
0
)