首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-01-19
100
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
。
B、kα
1
。
C、k(α
1
+α
2
)。
D、k(α
1
一α
2
)。
答案
D
解析
因为A是秩为n一1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
),故选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以A选项不正确;若α
1
=0,则B选项不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时C选项不正确。
转载请注明原文地址:https://kaotiyun.com/show/HmP4777K
0
考研数学三
相关试题推荐
设A=,若Ax=0的基础解系由2个线性无关的解向量构成,
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
随机试题
A.正中神经B.尺神经C.坐骨神经D.股神经(2000年)肘管综合征卡压的神经是
35岁男性患者,患慢性肾炎已4年,加重伴少尿1周。血压180/100mmHg,内生肌酐清除率8.7ml/min,诊断为慢性肾小球肾炎慢性肾衰竭尿毒症期。如果检查的结果如下,哪一项是最高危的结果
患者男,7岁,因多数乳牙龋坏去口腔科就诊,医生治疗龋坏牙后推荐专业应用含氟凝胶防龋。医生叮嘱患者下次复诊时间是
关于胆汁酸的叙述,错误的是
A.中介体B.包涵体C.吞噬体D.线粒体E.异染颗粒可用于鉴别细菌的结构是
心血管系统中药中毒反应的表现有()。
A.西地碘B.甲巯咪唑C.碳酸锂D.碘化钾E.胺碘酮甲亢的主要治疗药物是()。
随着互联网时代的加速和社会的“碎片化”,媒介也在不断发生着________,人们的阅读方式由传统的纸质载体向多媒体互动阅读________。网络工具及“互联网+”时代的社群营销新形式,对当下出版业的发展以及出版社的营销变革产生了很大的影响。填入画横线部分最
新闻框槊的因种具体功能是什么?
WhowontheWorldCup1994footballgame?WhathappenedattheUnitedNations?Howdidthecriticslikethenewplay?【1】anevent
最新回复
(
0
)