首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
admin
2019-03-12
72
问题
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A
-1
的每行元素之和均为
选项
答案
(1)将A中各列加到第一列,得 [*] 若a=0,则|A|=0,这与A是可逆矩阵矛盾,故a≠0. (2)令A=[α
1
,α
2
,…,α
n
],A=[β
1
,β
2
,…,β
n
],E=[e
1
,e
2
,…,e
n
],由A
-1
A=E,得 A
-1
[α
1
,α
2
,…,α
n
]=[e
1
,e
2
,…,e
n
], A
-1
α
j
e
j
,j=1,…,n, A
-1
α
1
+A
-1
α
2
+…+A
-1
α
n
=e
1
+e
2
+…+e
n
, A
-1
(α
1
+α
2
+…+α
n
)=[*] 另一方面,[*]=a(β
1
+β
2
+…+β
n
). 比较以上两式,可得 a(β
1
+β
2
+…+β
n
)=[*].β
1
+β
2
+…+β
n
=[*] 故A
-1
的每行元素之和为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hMP4777K
0
考研数学三
相关试题推荐
设f(χ)有一个原函数ln(χ+),则∫01χf′(χ)dχ=_______.
二阶微分方程y"+y=10e2x满足条件y(0)=0,y’(0)=1的特解是y=________.
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明:(Ⅰ)存在c∈(0,1),使得f(c)=;(Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
曲线的渐近线条数为().
设讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解,有无数个解时求通解.
设总体X的密度函数为其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
设随机变量X的概率密度为对X作两次独立观察.设两次的观察值为X1,X2,令(I)求常数a及P{X1
设问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.
证明,—1<x<1。
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图1—2—2所示,则y=f(x)的拐点个数是()
随机试题
垄断资本是怎样利用国家来为其经济利益服务的?
A.妊娠满28周后,胎儿及附属物全部从母体排出B.孕满28周至不满37周娩出者C.孕满42周及以后分娩者D.孕满37周而不满42周分娩者E.孕不满28周,胎儿不足1000g而娩出者
划分委托监理合同包的工作范围时,通常考虑的因素包括( )。
课堂教学、科学研究与社会实践是高校培养合格人才的三个基本途径。()
道德修养与社会实践密切相连。一个人只有在日常生活中,即在与别人、与集体发生的各种关系中,才较清楚地认识到自己的行为哪些是道德的,哪些是不道德的。同样,克服不道德的思想和行为,也只有在社会实践中才能实现。这段文字意在说明()。
根据以下资料,回答下列问题。2017年我国成年国民图书阅读率为59.1%,比上年增加0.3个百分点;报纸阅读率为37.6%,比上年降低2.1个百分点;期刊阅读率为25.3%,比上年增加1个百分点。2017年我国成年
婴儿主要的思维形式是
张教授:莎士比亚名下的戏剧和诗歌,其实不是他写的,而是伊丽莎白一世写的。莎士比亚是个没有受过多少教育的乡下人,而伊丽莎白一世则完全具有完成这些天才作品的知识和教养。李研究员:你的断定是不能成立的。因为如果伊丽莎白写了像《哈姆雷特》这样的名剧的话,她早
READINGPASSAGE1Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below. Cleaner
A、Wecanonlyovercomedifficultieswithfriends’help.B、Ourbreathingwillbedeepandregular.C、Ourstresslevelswillrise.
最新回复
(
0
)