首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P.
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P.
admin
2020-06-05
55
问题
已知二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
+2ax
2
x
3
通过正交变换x=Py化成标准形f=3y
1
2
+3y
2
2
+by
3
2
,求参数a,b及正交矩阵P.
选项
答案
二次型f及其标准形的矩阵分别是 A=[*]与[*] 而 |A-2E| [*] =(1-λ-a)[a
2
-(2+a)λ+a-7] 又A与[*]相似,从而3是特征方程|A-λE|=0的二重根.注意到[﹣(2+a)]
2
-4(a-7)=a
2
+32﹥0 故而1-a=3,a=﹣2.再由Tr(A)=[*]得1+1+1=3+3+b,解之得b=﹣3.于是可得矩阵A的特征值是3,3,﹣3. 当λ=3时,解方程(A-3E)x=0.由 A-3E=[*] 得基础解系p
1
=(﹣1,1,0)
T
,p
2
=(﹣1,0,1)
T
.对p
1
,p
2
正交化,令α
1
=p
1
=[*],α
2
=p
2
-[*] 对于α
1
,α
2
进行单位化,有[*] 当λ=﹣3时,解方程(A+3E)x=0.由 A+3E[*] 得基础解系p
3
=(1,1,1)
T
,对p
3
单位化,得q
3
=[*].于是正交变换 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hNv4777K
0
考研数学一
相关试题推荐
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=___________.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B-2E)-1=_________。
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
n阶矩阵A和B具有相同的特征值是A和B相似的()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
随机试题
美国:墨西哥
患者于某,女性,58岁。两年前曾患“中风”,经治已愈,之后逐渐出现善忘呆滞,言语模糊不清,行为古怪孤僻,时哭时笑,诊见两目黯晦,舌黯,脉细涩。若病人日久兼气血不足应
第一个用于临床的磺酰脲类降糖药结构上属于低聚糖药物,可竞争性地抑制葡萄糖苷酶
大中型药品零售企业的质量负责人药品零售连锁门店的质量管理负责人
在项目生命周期中,融资服务需要解决的问题涉及()
某项目总投资为2000万元,分3年均衡发放,第一年投资500万元,第二年投资1000万元,第三年投资500万元,建设期内年利率为10%,则建设期贷款利息共计( )万元。
根据下面材料,回答下列题目:假定1年期零息债券面值为100元,现价为94.34元,而2年期零息债券现价为84.99元。某投资者考虑购买2年期每年付息的债券,面值为100元,年息票利率为12%。2年期零息债券的到期收益率是______;2年期有息债券的
下列不属于操作风险损失事件收集工作应坚持的原则的是()。
体育锻炼课是我国中小学最普遍、最有保障的一种课余体育活动形式。
What%theword"saying"(Line1,Para1)inthispassagemean?Whichindustrydoeshisfriendengagein?
最新回复
(
0
)