首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P.
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P.
admin
2020-06-05
56
问题
已知二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
+2ax
2
x
3
通过正交变换x=Py化成标准形f=3y
1
2
+3y
2
2
+by
3
2
,求参数a,b及正交矩阵P.
选项
答案
二次型f及其标准形的矩阵分别是 A=[*]与[*] 而 |A-2E| [*] =(1-λ-a)[a
2
-(2+a)λ+a-7] 又A与[*]相似,从而3是特征方程|A-λE|=0的二重根.注意到[﹣(2+a)]
2
-4(a-7)=a
2
+32﹥0 故而1-a=3,a=﹣2.再由Tr(A)=[*]得1+1+1=3+3+b,解之得b=﹣3.于是可得矩阵A的特征值是3,3,﹣3. 当λ=3时,解方程(A-3E)x=0.由 A-3E=[*] 得基础解系p
1
=(﹣1,1,0)
T
,p
2
=(﹣1,0,1)
T
.对p
1
,p
2
正交化,令α
1
=p
1
=[*],α
2
=p
2
-[*] 对于α
1
,α
2
进行单位化,有[*] 当λ=﹣3时,解方程(A+3E)x=0.由 A+3E[*] 得基础解系p
3
=(1,1,1)
T
,对p
3
单位化,得q
3
=[*].于是正交变换 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hNv4777K
0
考研数学一
相关试题推荐
设随机事件A与B互不相容,且A=B,则P(A)=_______.
设方阵A1与B1合同,A2与B2合同,证明:合同.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程y"+p(x)y’+q(x)y=f(x)(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
n阶矩阵A和B具有相同的特征值是A和B相似的()
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
随机试题
关于反竞争性抑制剂的正确阐述是
纵隔疾病首选的影像学检查方法是
某幢写字楼,土堆面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日——2035年10月1日,土地使用权出让合同中未约定到期后不可续期。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重
有一列500m火车正在运行。若距铁路中心线600m处测得声压级为70dB,距铁路中心线1200m处有居民楼,则该居民楼的声压级是()dB。
()是确定利害关系者对于交流和沟通的要求——谁需要信息,需要什么样的信息,何时需要信息以及应怎样将信息传递到他们手中。
沥青路面检测中除平整度、纵断高程、厚度外,还应检测()。
契约型基金筹集的资金属于()。
以下()策略不是按营销渠道模式分类。
简述幼儿口语表达能力的发展特点。(山西)
AloeVitaminHandCreamArichyetlightweightnon-greasytexturethatactslikeagloveprovidingprotectionagainstharmfu
最新回复
(
0
)