首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(χ)在(0,+∞)上具有二阶导数,且f〞(χ)>0,令un=f(n)(n=1,2,…),则下列结论正确的是 【 】
(2007年)设函数f(χ)在(0,+∞)上具有二阶导数,且f〞(χ)>0,令un=f(n)(n=1,2,…),则下列结论正确的是 【 】
admin
2021-01-19
57
问题
(2007年)设函数f(χ)在(0,+∞)上具有二阶导数,且f〞(χ)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是 【 】
选项
A、若u
1
>u
2
,则{u
n
}必收敛.
B、若u
1
>u
2
,则{u
n
}必发散.
C、若u
1
<u
2
,则{u
n
}必收敛.
D、若u
1
<u
2
,则{u
n
}必发散.
答案
D
解析
由拉格朗日中值定理知
u
2
-u
1
=f(2)-f(1)=f′(c) (1<c<2)
而u
2
>u
1
,则f′(c)>0,
由于f〞(χ)>0,则f′(χ)单调增,从而有f′(2)>f′(c)>0,由泰勒公式得,
f(χ)=f(2)+f′(2)(χ-2)+
(χ-2)
2
χ∈(0,+∞)
则f(n)=(2)+f′(2)(n-2)+
(n-2)
2
>f(2)+f′(2)(n-2) (n>2)
由于f′(2)>0,则
(f(2)+f′(2)(n-2))=+∞,从而
f(n)=+∞,故{u
n
}发散.
转载请注明原文地址:https://kaotiyun.com/show/hR84777K
0
考研数学二
相关试题推荐
(87年)求
(1994年)计算∫01χdχ.
设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式。
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。(注:m表
(2000年试题,九)已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且F(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP—1;
比较定积分的大小.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
设三元线性方程组有通解求原方程组.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
随机试题
家属、挚友间的接触,依据霍尔的观点属于()
患者,女,29岁。病人每于经前出现小腹疼痛拒按,有灼热感,腰骶胀痛,午后低热,经色黯红,质稠有块,带下黄稠,小便短赤,舌质红,苔黄腻,脉弦数。治疗应首选
李小路是某大学的学生,李小路某日在学校的公告栏上看到有人转让自行车,李小路与该人取得联系,该人自称自行车是自己家闲置不用的,李小路如果要,100元钱即可卖给他,李小路看该人面相忠厚,价钱也比较合理,遂买下了自行车。李小路第二天骑车去上课的路上,被学生张大海
读下面图表完成问题。造成A、C两地气温差异的主要原因是()。
由主调临时转换到副调,在副调上既不作巩固,又不作停留,只是短暂的、过渡性质的,并且很快又回到主调,称之为离调。()
百思不得其解的问题,放置一段时间再重新审视的时候豁然开朗,这在心理学里叫
随机变量X的密度为:f(χ)=且知EX=6,则常数A=_______,B=_______.
求下列方程的通解或特解:(Ⅰ)-4y=4x2,y(0)=,y’(0)=2;(Ⅱ)+2y=e-xcosx.
EveryDogHasItsSayKimikoFukuda,aJapanesegirl,alwayswonderedwhatherdogwastryingtosay.Wheneversheputonmak
ReadthetextbelowaboutMilair’sletterofapology.Inmostoftheline(34-45)thereisoneextraword.Itiseithergrammati
最新回复
(
0
)